操作指南:
重要
此功能处于实验阶段。 此阶段的功能正在开发中,在升级到预览阶段或候选发布阶段之前可能会更改。
概述
在这个示例中,我们将探讨如何配置插件以访问 GitHub API,并提供模板化的指示给 ChatCompletionAgent,以回答有关 GitHub 存储库的问题。  该方法将逐步说明编码过程中的关键部分。  作为任务的一部分,代理将在响应中提供文档引文。
流媒体将用于传递智能助手的响应。 这将在任务进行时提供实时更新。
入门
在继续执行功能编码之前,请确保开发环境已完全设置和配置。
首先创建 控制台 项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。
若要从命令行添加包依赖项,请使用 dotnet 以下命令:
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel.Connectors.AzureOpenAI
dotnet add package Microsoft.SemanticKernel.Agents.Core --prerelease
重要
如果在 Visual Studio 中管理 NuGet 包,请确保选中 Include prerelease。
项目文件 (.csproj) 应包含以下 PackageReference 定义:
  <ItemGroup>
    <PackageReference Include="Azure.Identity" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
    <PackageReference Include="Microsoft.SemanticKernel.Agents.Core" Version="<latest>" />
    <PackageReference Include="Microsoft.SemanticKernel.Connectors.AzureOpenAI" Version="<latest>" />
  </ItemGroup>
              Agent Framework 是实验性的,需要屏蔽警告。  这可以在项目文件(.csproj)中作为一个属性来解决。
  <PropertyGroup>
    <NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
  </PropertyGroup>
此外,从GitHubPlugin.cs复制 GitHub 插件和模型(GitHubModels.cs以及LearnResources)。  在项目文件夹中添加这些文件。
首先创建一个将保存脚本(.py 文件)和示例资源的文件夹。 在 .py 文件的顶部包括以下导入:
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import KernelArguments
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings  # noqa: E402
此外,从github.py复制 GitHub 插件和模型(LearnResources)。  在项目文件夹中添加这些文件。
首先创建 Maven 控制台项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。
项目 pom.xml 应包含以下依赖项:
<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>com.microsoft.semantic-kernel</groupId>
            <artifactId>semantickernel-bom</artifactId>
            <version>[LATEST]</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>
<dependencies>
    <dependency>
        <groupId>com.microsoft.semantic-kernel</groupId>
        <artifactId>semantickernel-agents-core</artifactId>
    </dependency>
    <dependency>
        <groupId>com.microsoft.semantic-kernel</groupId>
        <artifactId>semantickernel-aiservices-openai</artifactId>
    </dependency>
</dependencies>
此外,从GitHubPlugin.java复制 GitHub 插件和模型(GitHubModels.java以及LearnResources)。  在项目文件夹中添加这些文件。
配置
此示例需要配置设置才能连接到远程服务。 需要为 OpenAI 或 Azure OpenAI 以及 GitHub 定义设置。
注释
有关 GitHub 个人访问令牌的信息,请参阅: 管理个人访问令牌。
# OpenAI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure OpenAI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
# GitHub
dotnet user-secrets set "GitHubSettings:BaseUrl" "https://api.github.com"
dotnet user-secrets set "GitHubSettings:Token" "<personal access token>"
以下类在所有代理示例中均使用。 请确保将其包含在项目中,以确保适当的功能。 此类充当以下示例的基础组件。
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
    private readonly IConfigurationRoot configRoot;
    private AzureOpenAISettings azureOpenAI;
    private OpenAISettings openAI;
    public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
    public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
    public class OpenAISettings
    {
        public string ChatModel { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }
    public class AzureOpenAISettings
    {
        public string ChatModelDeployment { get; set; } = string.Empty;
        public string Endpoint { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }
    public TSettings GetSettings<TSettings>() =>
        this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
    public Settings()
    {
        this.configRoot =
            new ConfigurationBuilder()
                .AddEnvironmentVariables()
                .AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
                .Build();
    }
}
运行示例代码的正确配置入门的最快方法是在项目的根目录(运行脚本的位置)创建 .env 文件。
在 .env 文件中为 Azure OpenAI 或 OpenAI 配置以下设置:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
配置后,相应的 AI 服务类将选取所需的变量,并在实例化期间使用这些变量。
在系统中定义以下环境变量。
# Azure OpenAI
AZURE_OPENAI_API_KEY=""
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_CHAT_MODEL_DEPLOYMENT=""
# OpenAI
OPENAI_API_KEY=""
OPENAI_MODEL_ID=""
在文件的顶部,可以检索其值,如下所示。
// Azure OpenAI
private static final String AZURE_OPENAI_API_KEY = System.getenv("AZURE_OPENAI_API_KEY");
private static final String AZURE_OPENAI_ENDPOINT = System.getenv("AZURE_OPENAI_ENDPOINT");
private static final String AZURE_CHAT_MODEL_DEPLOYMENT = System.getenv().getOrDefault("AZURE_CHAT_MODEL_DEPLOYMENT", "gpt-4o");
// OpenAI
private static final String OPENAI_API_KEY = System.getenv("OPENAI_API_KEY");
private static final String OPENAI_MODEL_ID = System.getenv().getOrDefault("OPENAI_MODEL_ID", "gpt-4o");
编码
此示例的编码过程涉及:
最终部分提供了完整的示例代码。 有关完整实现,请参阅该部分。
安装
在创建 ChatCompletionAgent 之前,必须初始化配置设置、插件和 Kernel。
使用其设置初始化插件。
此时会显示一条消息来指示进度。
Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
gh_settings = GitHubSettings(
    token="<PAT value>"
)
kernel.add_plugin(GitHubPlugin(settings=gh_settings), plugin_name="github")
var githubPlugin = new GitHubPlugin(GITHUB_PAT);
现在,用Kernel和之前创建的IChatCompletionService来初始化GitHubPlugin实例。
Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
    settings.AzureOpenAI.ChatModelDeployment,
    settings.AzureOpenAI.Endpoint,
    new AzureCliCredential());
builder.Plugins.AddFromObject(githubPlugin);
Kernel kernel = builder.Build();
kernel = Kernel()
# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
OpenAIAsyncClient client = new OpenAIClientBuilder()
    .credential(new AzureKeyCredential(AZURE_OPENAI_API_KEY))
    .endpoint(AZURE_OPENAI_ENDPOINT)
    .buildAsyncClient();
ChatCompletionService chatCompletion = OpenAIChatCompletion.builder()
    .withModelId(AZURE_CHAT_MODEL_DEPLOYMENT)
    .withOpenAIAsyncClient(client)
    .build();
Kernel kernel = Kernel.builder()
    .withAIService(ChatCompletionService.class, chatCompletion)
    .withPlugin(KernelPluginFactory.createFromObject(githubPlugin, "GitHubPlugin"))
    .build();
代理定义
最后,我们准备实例化一个ChatCompletionAgent,包括其指令、关联的Kernel以及默认参数和执行设置。  在这种情况下,我们希望自动执行任何插件函数。
Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
    new()
    {
        Name = "SampleAssistantAgent",
        Instructions =
            """
            You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
            You are also able to access the profile of the active user.
            Use the current date and time to provide up-to-date details or time-sensitive responses.
            The repository you are querying is a public repository with the following name: {{$repository}}
            The current date and time is: {{$now}}. 
            """,
        Kernel = kernel,
        Arguments =
            new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
            {
                { "repository", "microsoft/semantic-kernel" }
            }
    };
Console.WriteLine("Ready!");
agent = ChatCompletionAgent(
    kernel=kernel,
    name="SampleAssistantAgent",
    instructions=f"""
        You are an agent designed to query and retrieve information from a single GitHub repository in a read-only 
        manner.
        You are also able to access the profile of the active user.
        Use the current date and time to provide up-to-date details or time-sensitive responses.
        The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
        The current date and time is: {{$now}}. 
        """,
    arguments=KernelArguments(
        settings=settings,
    ),
)
// Invocation context for the agent
InvocationContext invocationContext = InvocationContext.builder()
    .withFunctionChoiceBehavior(FunctionChoiceBehavior.auto(true))
    .build()
ChatCompletionAgent agent = ChatCompletionAgent.builder()
    .withName("SampleAssistantAgent")
    .withKernel(kernel)
    .withInvocationContext(invocationContext)
    .withTemplate(
        DefaultPromptTemplate.build(
            PromptTemplateConfig.builder()
                .withTemplate(
                    """
                    You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
                    You are also able to access the profile of the active user.
                    Use the current date and time to provide up-to-date details or time-sensitive responses.
                    The repository you are querying is a public repository with the following name: {{$repository}}
                    The current date and time is: {{$now}}.
                    """)
                .build()))
    .withKernelArguments(
        KernelArguments.builder()
            .withVariable("repository", "microsoft/semantic-kernel-java")
            .withExecutionSettings(PromptExecutionSettings.builder()
                    .build())
            .build())
    .build();
聊天循环
最后,我们能够协调用户与 Agent之间的交互。  首先创建一个 ChatHistoryAgentThread 对象来维护聊天状态并创建一个空循环。
ChatHistoryAgentThread agentThread = new();
bool isComplete = false;
do
{
    // processing logic here
} while (!isComplete);
thread: ChatHistoryAgentThread = None
is_complete: bool = False
while not is_complete:
    # processing logic here
AgentThread agentThread = new ChatHistoryAgentThread();
boolean isComplete = false;
while (!isComplete) {
    // processing logic here
}
现在,让我们在前面的循环中捕获用户输入。  在这种情况下,将忽略空输入,术语 EXIT 将指示会话已完成。
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
    continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
    isComplete = true;
    break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
    continue
if user_input.lower() == "exit":
    is_complete = True
    break
Scanner scanner = new Scanner(System.in);
while (!isComplete) {
    System.out.print("> ");
    String input = scanner.nextLine();
    if (input.isEmpty()) {
        continue;
    }
    if (input.equalsIgnoreCase("exit")) {
        isComplete = true;
        break;
    }
}
若要生成 Agent 对用户输入的响应,请使用 Arguments 调用代理,以提供指定当前日期和时间的最终模板参数。
然后,响应 Agent 会显示给用户。
DateTime now = DateTime.Now;
KernelArguments arguments =
    new()
    {
        { "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
    };
await foreach (ChatMessageContent response in agent.InvokeAsync(message, agentThread, options: new() { KernelArguments = arguments }))
{
    Console.WriteLine($"{response.Content}");
}
arguments = KernelArguments(
    now=datetime.now().strftime("%Y-%m-%d %H:%M")
)
async for response in agent.invoke(messages=user_input, thread=thread, arguments=arguments):
    print(f"{response.content}")
    thread = response.thread
var options = AgentInvokeOptions.builder()
    .withKernelArguments(KernelArguments.builder()
            .withVariable("now", OffsetDateTime.now())
            .build())
    .build();
for (var response : agent.invokeAsync(message, agentThread, options).block()) {
    System.out.println(response.getMessage());
    agentThread = response.getThread();
}
最终
将所有步骤组合在一起,我们提供了此示例的最终代码。 下面提供了完整的实现。
请尝试使用这些建议的输入:
- 我的用户名是什么?
- 描述存储库。
- 描述在存储库中创建的最新问题。
- 列出上周关闭的前 10 个问题。
- 这些问题是如何被标记的?
- 列出“代理”标签最近打开的 5 个问题
using System;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
using Plugins;
namespace AgentsSample;
public static class Program
{
    public static async Task Main()
    {
        // Load configuration from environment variables or user secrets.
        Settings settings = new();
        Console.WriteLine("Initialize plugins...");
        GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
        GitHubPlugin githubPlugin = new(githubSettings);
        Console.WriteLine("Creating kernel...");
        IKernelBuilder builder = Kernel.CreateBuilder();
        builder.AddAzureOpenAIChatCompletion(
            settings.AzureOpenAI.ChatModelDeployment,
            settings.AzureOpenAI.Endpoint,
            new AzureCliCredential());
        builder.Plugins.AddFromObject(githubPlugin);
        Kernel kernel = builder.Build();
        Console.WriteLine("Defining agent...");
        ChatCompletionAgent agent =
            new()
            {
                Name = "SampleAssistantAgent",
                Instructions =
                        """
                        You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
                        You are also able to access the profile of the active user.
                        Use the current date and time to provide up-to-date details or time-sensitive responses.
                        The repository you are querying is a public repository with the following name: {{$repository}}
                        The current date and time is: {{$now}}. 
                        """,
                Kernel = kernel,
                Arguments =
                    new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
                    {
                        { "repository", "microsoft/semantic-kernel" }
                    }
            };
        Console.WriteLine("Ready!");
        ChatHistoryAgentThread agentThread = new();
        bool isComplete = false;
        do
        {
            Console.WriteLine();
            Console.Write("> ");
            string input = Console.ReadLine();
            if (string.IsNullOrWhiteSpace(input))
            {
                continue;
            }
            if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
            {
                isComplete = true;
                break;
            }
            var message = new ChatMessageContent(AuthorRole.User, input);
            Console.WriteLine();
            DateTime now = DateTime.Now;
            KernelArguments arguments =
                new()
                {
                    { "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
                };
            await foreach (ChatMessageContent response in agent.InvokeAsync(message, agentThread, options: new() { KernelArguments = arguments }))
            {
                // Display response.
                Console.WriteLine($"{response.Content}");
            }
        } while (!isComplete);
    }
}
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.functions import KernelArguments
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings  # noqa: E402
async def main():
    kernel = Kernel()
    # Add the AzureChatCompletion AI Service to the Kernel
    service_id = "agent"
    kernel.add_service(AzureChatCompletion(service_id=service_id))
    settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
    # Configure the function choice behavior to auto invoke kernel functions
    settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
    # Set your GitHub Personal Access Token (PAT) value here
    gh_settings = GitHubSettings(token="")  # nosec
    kernel.add_plugin(plugin=GitHubPlugin(gh_settings), plugin_name="GithubPlugin")
    current_time = datetime.now().isoformat()
    # Create the agent
    agent = ChatCompletionAgent(
        kernel=kernel,
        name="SampleAssistantAgent",
        instructions=f"""
            You are an agent designed to query and retrieve information from a single GitHub repository in a read-only 
            manner.
            You are also able to access the profile of the active user.
            Use the current date and time to provide up-to-date details or time-sensitive responses.
            The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
            The current date and time is: {current_time}. 
            """,
        arguments=KernelArguments(settings=settings),
    )
    thread: ChatHistoryAgentThread = None
    is_complete: bool = False
    while not is_complete:
        user_input = input("User:> ")
        if not user_input:
            continue
        if user_input.lower() == "exit":
            is_complete = True
            break
        arguments = KernelArguments(now=datetime.now().strftime("%Y-%m-%d %H:%M"))
        async for response in agent.invoke(messages=user_input, thread=thread, arguments=arguments):
            print(f"{response.content}")
            thread = response.thread
if __name__ == "__main__":
    asyncio.run(main())
可以在存储库中找到完整的 代码,如上所示。
import com.microsoft.semantickernel.Kernel;
import com.microsoft.semantickernel.agents.AgentInvokeOptions;
import com.microsoft.semantickernel.agents.AgentThread;
import com.microsoft.semantickernel.agents.chatcompletion.ChatCompletionAgent;
import com.microsoft.semantickernel.agents.chatcompletion.ChatHistoryAgentThread;
import com.microsoft.semantickernel.aiservices.openai.chatcompletion.OpenAIChatCompletion;
import com.microsoft.semantickernel.contextvariables.ContextVariableTypeConverter;
import com.microsoft.semantickernel.functionchoice.FunctionChoiceBehavior;
import com.microsoft.semantickernel.implementation.templateengine.tokenizer.DefaultPromptTemplate;
import com.microsoft.semantickernel.orchestration.InvocationContext;
import com.microsoft.semantickernel.orchestration.PromptExecutionSettings;
import com.microsoft.semantickernel.plugin.KernelPluginFactory;
import com.microsoft.semantickernel.samples.plugins.github.GitHubModel;
import com.microsoft.semantickernel.samples.plugins.github.GitHubPlugin;
import com.microsoft.semantickernel.semanticfunctions.KernelArguments;
import com.microsoft.semantickernel.semanticfunctions.PromptTemplateConfig;
import com.microsoft.semantickernel.services.chatcompletion.AuthorRole;
import com.microsoft.semantickernel.services.chatcompletion.ChatCompletionService;
import com.microsoft.semantickernel.services.chatcompletion.ChatMessageContent;
import com.azure.ai.openai.OpenAIAsyncClient;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.azure.core.credential.AzureKeyCredential;
import java.time.OffsetDateTime;
import java.util.Scanner;
public class CompletionAgent {
    // Azure OpenAI
    private static final String AZURE_OPENAI_API_KEY = System.getenv("AZURE_OPENAI_API_KEY");
    private static final String AZURE_OPENAI_ENDPOINT = System.getenv("AZURE_OPENAI_ENDPOINT");
    private static final String AZURE_CHAT_MODEL_DEPLOYMENT = System.getenv().getOrDefault("AZURE_CHAT_MODEL_DEPLOYMENT", "gpt-4o");
    // GitHub Personal Access Token
    private static final String GITHUB_PAT = System.getenv("GITHUB_PAT");
    public static void main(String[] args) {
        System.out.println("======== ChatCompletion Agent ========");
        OpenAIAsyncClient client = new OpenAIClientBuilder()
                .credential(new AzureKeyCredential(AZURE_OPENAI_API_KEY))
                .endpoint(AZURE_OPENAI_ENDPOINT)
                .buildAsyncClient();
        var githubPlugin = new GitHubPlugin(GITHUB_PAT);
        ChatCompletionService chatCompletion = OpenAIChatCompletion.builder()
                .withModelId(AZURE_CHAT_MODEL_DEPLOYMENT)
                .withOpenAIAsyncClient(client)
                .build();
        Kernel kernel = Kernel.builder()
            .withAIService(ChatCompletionService.class, chatCompletion)
            .withPlugin(KernelPluginFactory.createFromObject(githubPlugin, "GitHubPlugin"))
            .build();
        InvocationContext invocationContext = InvocationContext.builder()
            .withFunctionChoiceBehavior(FunctionChoiceBehavior.auto(true))
            .withContextVariableConverter(new ContextVariableTypeConverter<>(
                    GitHubModel.Issue.class,
                    o -> (GitHubModel.Issue) o,
                    o -> o.toString(),
                    s -> null))
            .build();
        ChatCompletionAgent agent = ChatCompletionAgent.builder()
            .withName("SampleAssistantAgent")
            .withKernel(kernel)
            .withInvocationContext(invocationContext)
            .withTemplate(
                DefaultPromptTemplate.build(
                    PromptTemplateConfig.builder()
                        .withTemplate(
                            """
                            You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
                            You are also able to access the profile of the active user.
                            Use the current date and time to provide up-to-date details or time-sensitive responses.
                            The repository you are querying is a public repository with the following name: {{$repository}}
                            The current date and time is: {{$now}}.
                            """)
                        .build()))
            .withKernelArguments(
                KernelArguments.builder()
                    .withVariable("repository", "microsoft/semantic-kernel-java")
                    .withExecutionSettings(PromptExecutionSettings.builder()
                            .build())
                    .build())
            .build();
        AgentThread agentThread = new ChatHistoryAgentThread();
        boolean isComplete = false;
        Scanner scanner = new Scanner(System.in);
        while (!isComplete) {
            System.out.print("> ");
            String input = scanner.nextLine();
            if (input.isEmpty()) {
                continue;
            }
            if (input.equalsIgnoreCase("EXIT")) {
                isComplete = true;
                break;
            }
            var message = new ChatMessageContent<>(AuthorRole.USER, input);
            var options = AgentInvokeOptions.builder()
                .withKernelArguments(KernelArguments.builder()
                        .withVariable("now", OffsetDateTime.now())
                        .build())
                .build();
            for (var response : agent.invokeAsync(message, agentThread, options).block()) {
                System.out.println(response.getMessage());
                agentThread = response.getThread();
            }
        }
    }
}