使用指南:
重要
此功能处于候选发布阶段。 此阶段的功能几乎完整且一般稳定,尽管这些功能可能会在全面普遍可用之前进行轻微的改进或优化。
概述
在此示例中,我们将探讨如何使用代码 OpenAIAssistantAgent 解释器工具来完成数据分析任务。 该方法将逐步分解以突出编码过程中的关键部分。 作为任务的一部分,代理将生成图像和文本响应。 这将演示此工具在执行定量分析方面的多功能性。
流式处理将用于传送代理人的响应。 这将在任务进行时提供实时更新。
入门
在继续执行功能编码之前,请确保开发环境已完全设置和配置。
首先创建控制台项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。
若要从命令行添加包依赖项,请使用 dotnet 以下命令:
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.OpenAI --prerelease
重要
如果在 Visual Studio 中管理 NuGet 包,请确保选中 Include prerelease。
项目文件 (.csproj) 应包含以下 PackageReference 定义:
<ItemGroup>
<PackageReference Include="Azure.Identity" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
<PackageReference Include="Microsoft.SemanticKernel" Version="<latest>" />
<PackageReference Include="Microsoft.SemanticKernel.Agents.OpenAI" Version="<latest>" />
</ItemGroup>
Agent Framework 是实验性的,需要抑制警告。 这可以在项目文件(.csproj)中作为属性来解决。
<PropertyGroup>
<NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
</PropertyGroup>
此外,复制PopulationByAdmin1.csv和PopulationByCountry.csv数据文件从语义内核LearnResources项目。 在项目文件夹中添加这些文件,并将其配置为将它们复制到输出目录:
<ItemGroup>
<None Include="PopulationByAdmin1.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
<None Include="PopulationByCountry.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
</ItemGroup>
首先创建一个将保存脚本(.py 文件)和示例资源的文件夹。 在 .py 文件的顶部包含以下导入:
import asyncio
import os
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent
from semantic_kernel.contents import StreamingFileReferenceContent
此外,将PopulationByAdmin1.csv和PopulationByCountry.csv数据文件从语义内核learn_resources/resources目录中复制出来。 将这些文件添加到工作目录。
功能当前在 Java 中不可用。
配置
此示例需要配置设置才能连接到远程服务。 需要定义 OpenAI 或 Azure OpenAI 的设置。
# OpenAI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure OpenAI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
以下类在所有代理示例中均使用。 请确保将其包含在项目中,以确保适当的功能。 此类作为后续示例的基础类。
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
private readonly IConfigurationRoot configRoot;
private AzureOpenAISettings azureOpenAI;
private OpenAISettings openAI;
public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
public class OpenAISettings
{
public string ChatModel { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public class AzureOpenAISettings
{
public string ChatModelDeployment { get; set; } = string.Empty;
public string Endpoint { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public TSettings GetSettings<TSettings>() =>
this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
public Settings()
{
this.configRoot =
new ConfigurationBuilder()
.AddEnvironmentVariables()
.AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
.Build();
}
}
运行示例代码的正确配置入门的最快方法是在项目的根目录(运行脚本的位置)创建 .env 文件。
在 .env 文件中为 Azure OpenAI 或 OpenAI 配置以下设置:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://<resource-name>.openai.azure.com/"
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
提示
Azure 助手至少需要 2024-05-01-preview 的 API 版本。 随着新功能的引入,API 版本会相应地更新。 截至本文撰写,最新版本为 2025-01-01-preview。 有关最新版本信息的详细内容,请参阅 Azure OpenAI API 预览生命周期。
配置后,相应的 AI 服务类将选取所需的变量,并在实例化期间使用这些变量。
功能当前在 Java 中不可用。
编码
此示例的编码过程涉及:
最终部分提供了完整的示例代码。 有关完整实现,请参阅该部分。
安装
在创建 OpenAIAssistantAgent之前,请确保配置设置可用并准备文件资源。
实例化 Settings 上一 配置 部分中引用的类。 使用设置来创建一个AzureOpenAIClient,该AzureOpenAIClient将用于代理定义和文件上传。
Settings settings = new();
AzureOpenAIClient client = OpenAIAssistantAgent.CreateAzureOpenAIClient(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
功能当前在 Java 中不可用。
使用AzureOpenAIClient访问OpenAIFileClient,上传上一节配置中描述的两个数据文件,并保留文件引用以供最终清理。
Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = client.GetOpenAIFileClient();
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
在创建 AzureAssistantAgent 或 OpenAIAssistantAgent之前,请确保配置设置可用并准备文件资源。
提示
可能需要根据文件所在的位置调整文件路径。
# Let's form the file paths that we will use as part of file upload
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByCountry.csv",
)
# Create the client using Azure OpenAI resources and configuration
client, model = AzureAssistantAgent.setup_resources()
# Upload the files to the client
file_ids: list[str] = []
for path in [csv_file_path_1, csv_file_path_2]:
with open(path, "rb") as file:
file = await client.files.create(file=file, purpose="assistants")
file_ids.append(file.id)
# Get the code interpreter tool and resources
code_interpreter_tools, code_interpreter_tool_resources = AzureAssistantAgent.configure_code_interpreter_tool(
file_ids=file_ids
)
# Create the assistant definition
definition = await client.beta.assistants.create(
model=model,
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
name="SampleAssistantAgent",
tools=code_interpreter_tools,
tool_resources=code_interpreter_tool_resources,
)
我们首先设置 Azure OpenAI 资源来获取客户端和模型。 接下来,我们使用客户端的文件 API 从指定路径上传 CSV 文件。 然后,我们使用上传的文件 ID 配置 code_interpreter_tool,这些 ID 在创建时会与智能助手、模型、说明和名称一起链接。
功能当前在 Java 中不可用。
代理定义
我们现在准备先创建一个助手定义来实例化 OpenAIAssistantAgent。 助理已配置其目标模型、指令, 并启用了 代码解释器 工具。 此外,我们显式将这两个数据文件与 代码解释器 工具相关联。
Console.WriteLine("Defining agent...");
AssistantClient assistantClient = client.GetAssistantClient();
Assistant assistant =
await assistantClient.CreateAssistantAsync(
settings.AzureOpenAI.ChatModelDeployment,
name: "SampleAssistantAgent",
instructions:
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enableCodeInterpreter: true,
codeInterpreterFileIds: [fileDataCountryList.Id, fileDataCountryDetail.Id]);
// Create agent
OpenAIAssistantAgent agent = new(assistant, assistantClient);
我们现在已准备好实例化 AzureAssistantAgent。 代理与客户端和助理定义一起配置。
# Create the agent using the client and the assistant definition
agent = AzureAssistantAgent(
client=client,
definition=definition,
)
功能当前在 Java 中不可用。
聊天循环
最后,我们能够协调用户与 Agent之间的交互。 首先创建一个 AgentThread 来维护聊天状态和创建一个空循环。
此外,请确保在执行结束时删除资源,以最大程度地减少不必要的费用。
Console.WriteLine("Creating thread...");
AssistantAgentThread agentThread = new();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agentThread.DeleteAsync(),
assistantClient.DeleteAssistantAsync(assistant.Id),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
thread: AssistantAgentThread = None
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
# agent interaction logic here
finally:
print("\nCleaning up resources...")
[await client.files.delete(file_id) for file_id in file_ids]
await thread.delete() if thread else None
await client.beta.assistants.delete(agent.id)
功能当前在 Java 中不可用。
现在,让我们在前一个循环中捕获用户的输入。 在这种情况下,将忽略空输入,术语 EXIT 将指示会话已完成。
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
功能当前在 Java 中不可用。
在调用 Agent 响应之前,让我们添加一些帮助程序方法来下载 Agent可能生成的任何文件。
在这里,我们将文件内容放置在系统定义的临时目录中,然后启动系统定义的查看器应用程序。
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
import os
async def download_file_content(agent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png" # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
功能当前在 Java 中不可用。
若要生成 Agent 对用户输入的响应,请通过提供消息和 AgentThread 来调用代理。 在此示例中,我们选择流式响应并捕获任何生成的 文件引用 ,以便在响应周期结束时下载和查看。 请务必注意,生成的代码是通过响应消息中存在 元数据 密钥来标识的,这与对话回复区分开来。
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
is_code = False
last_role = None
async for response in agent.invoke_stream(messages=user_input, thread=thread):
current_is_code = response.metadata.get("code", False)
if current_is_code:
if not is_code:
print("\n\n```python")
is_code = True
print(response.content, end="", flush=True)
else:
if is_code:
print("\n```")
is_code = False
last_role = None
if hasattr(response, "role") and response.role is not None and last_role != response.role:
print(f"\n# {response.role}: ", end="", flush=True)
last_role = response.role
print(response.content, end="", flush=True)
file_ids.extend([
item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
])
thread = response.thread
if is_code:
print("```\n")
print()
await download_response_image(agent, file_ids)
file_ids.clear()
功能当前在 Java 中不可用。
最终
将所有步骤组合在一起,我们提供了此示例的最终代码。 下面提供了完整的实现。
尝试使用这些建议的输入:
- 比较文件,以确定在总计数中,哪些国家没有定义州或省的数量。
- 为拥有州或省的国家创建表。 请包括州或省的数量以及总人口。
- 为名称以相同字母开头的国家/地区提供条形图,并将 x 轴按最高计数排序(包括所有国家/地区)
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents.OpenAI;
using Microsoft.SemanticKernel.ChatCompletion;
using OpenAI.Assistants;
using OpenAI.Files;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
namespace AgentsSample;
public static class Program
{
public static async Task Main()
{
// Load configuration from environment variables or user secrets.
Settings settings = new();
// Initialize the clients
AzureOpenAIClient client = OpenAIAssistantAgent.CreateAzureOpenAIClient(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
//OpenAIClient client = OpenAIAssistantAgent.CreateOpenAIClient(new ApiKeyCredential(settings.OpenAI.ApiKey)));
AssistantClient assistantClient = client.GetAssistantClient();
OpenAIFileClient fileClient = client.GetOpenAIFileClient();
// Upload files
Console.WriteLine("Uploading files...");
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
// Define assistant
Console.WriteLine("Defining assistant...");
Assistant assistant =
await assistantClient.CreateAssistantAsync(
settings.AzureOpenAI.ChatModelDeployment,
name: "SampleAssistantAgent",
instructions:
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enableCodeInterpreter: true,
codeInterpreterFileIds: [fileDataCountryList.Id, fileDataCountryDetail.Id]);
// Create agent
OpenAIAssistantAgent agent = new(assistant, assistantClient);
// Create the conversation thread
Console.WriteLine("Creating thread...");
AssistantAgentThread agentThread = new();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
var message = new ChatMessageContent(AuthorRole.User, input);
Console.WriteLine();
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(message, agentThread))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agentThread.DeleteAsync(),
assistantClient.DeleteAssistantAsync(assistant.Id),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
}
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
}
import asyncio
import logging
import os
from semantic_kernel.agents import AssistantAgentThread, AzureAssistantAgent
from semantic_kernel.contents import StreamingFileReferenceContent
logging.basicConfig(level=logging.ERROR)
"""
The following sample demonstrates how to create a simple,
OpenAI assistant agent that utilizes the code interpreter
to analyze uploaded files.
"""
# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"resources",
"PopulationByCountry.csv",
)
async def download_file_content(agent: AzureAssistantAgent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png", # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent: AzureAssistantAgent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
async def main():
# Create the client using Azure OpenAI resources and configuration
client, model = AzureAssistantAgent.setup_resources()
# Upload the files to the client
file_ids: list[str] = []
for path in [csv_file_path_1, csv_file_path_2]:
with open(path, "rb") as file:
file = await client.files.create(file=file, purpose="assistants")
file_ids.append(file.id)
# Get the code interpreter tool and resources
code_interpreter_tools, code_interpreter_tool_resources = AzureAssistantAgent.configure_code_interpreter_tool(
file_ids=file_ids
)
# Create the assistant definition
definition = await client.beta.assistants.create(
model=model,
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
name="SampleAssistantAgent",
tools=code_interpreter_tools,
tool_resources=code_interpreter_tool_resources,
)
# Create the agent using the client and the assistant definition
agent = AzureAssistantAgent(
client=client,
definition=definition,
)
thread: AssistantAgentThread = None
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
is_code = False
last_role = None
async for response in agent.invoke_stream(messages=user_input, thread=thread):
current_is_code = response.metadata.get("code", False)
if current_is_code:
if not is_code:
print("\n\n```python")
is_code = True
print(response.content, end="", flush=True)
else:
if is_code:
print("\n```")
is_code = False
last_role = None
if hasattr(response, "role") and response.role is not None and last_role != response.role:
print(f"\n# {response.role}: ", end="", flush=True)
last_role = response.role
print(response.content, end="", flush=True)
file_ids.extend([
item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
])
thread = response.thread
if is_code:
print("```\n")
print()
await download_response_image(agent, file_ids)
file_ids.clear()
finally:
print("\nCleaning up resources...")
[await client.files.delete(file_id) for file_id in file_ids]
await thread.delete() if thread else None
await client.beta.assistants.delete(agent.id)
if __name__ == "__main__":
asyncio.run(main())
可以在存储库中找到完整的 代码,如上所示。
功能当前在 Java 中不可用。