BigInteger.Max(BigInteger, BigInteger) Method  
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Returns the larger of two BigInteger values.
public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right);
	public:
 static System::Numerics::BigInteger Max(System::Numerics::BigInteger left, System::Numerics::BigInteger right) = System::Numerics::INumber<System::Numerics::BigInteger>::Max;
	public static System.Numerics.BigInteger Max(System.Numerics.BigInteger left, System.Numerics.BigInteger right);
	static member Max : System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigInteger
	Public Shared Function Max (left As BigInteger, right As BigInteger) As BigInteger
	Parameters
- left
 - BigInteger
 
The first value to compare.
- right
 - BigInteger
 
The second value to compare.
Returns
The left or right parameter, whichever is larger.
Implements
Examples
The following example uses the Max method to select the largest number in an array of BigInteger values.
using System;
using System.Numerics;
public class Example
{
   public static void Main()
   {
      BigInteger[] numbers = { Int64.MaxValue * BigInteger.MinusOne,
                               BigInteger.MinusOne,
                               10359321239000,
                               BigInteger.Pow(103988, 2),
                               BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue),
                               BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2),
                               BigInteger.Pow(Int32.MaxValue, 2)) };
      if (numbers.Length < 2)
      {
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length);
         return;
      }
      BigInteger largest = numbers[numbers.GetLowerBound(0)];
      for (int ctr = numbers.GetLowerBound(0) + 1; ctr <= numbers.GetUpperBound(0); ctr++)
         largest = BigInteger.Max(largest, numbers[ctr]);
      Console.WriteLine("The values:");
      foreach (BigInteger number in numbers)
         Console.WriteLine("{0,55:N0}", number);
      Console.WriteLine("\nThe largest number of the series is:");
      Console.WriteLine("   {0:N0}", largest);
   }
}
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
open System
open System.Numerics
let numbers =
    [| bigint Int64.MaxValue * BigInteger.MinusOne
       BigInteger.MinusOne
       10359321239000I
       BigInteger.Pow(103988I, 2)
       BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue)
       BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), BigInteger.Pow(Int32.MaxValue, 2)) |]
if numbers.Length < 2 then
    printfn $"Cannot determine which is the larger of {numbers.Length} numbers."
else
    let mutable largest = numbers[0]
    for ctr = 1 to numbers.Length - 1 do
        largest <- BigInteger.Max(largest, numbers[ctr])
    printfn "The values:"
    for number in numbers do
        printfn $"{number, 55:N0}"
    printfn "\nThe largest number of the series is:"
    printfn $"   {largest:N0}"
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//
//       The largest number of the series is:
//          85,070,591,730,234,615,852,008,593,798,364,921,858
Imports System.Numerics
Module Example
   Public Sub Main()
      Dim numbers() As BigInteger = { Int64.MaxValue * BigInteger.MinusOne, 
                                      BigInteger.MinusOne, 
                                      10359321239000, 
                                      BigInteger.Pow(103988, 2),
                                      BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue), 
                                      BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), 
                                                     BigInteger.Pow(Int32.MaxValue, 2)) }
      If numbers.Length < 2 Then 
         Console.WriteLine("Cannot determine which is the larger of {0} numbers.",
                            numbers.Length)
         Exit Sub
      End If
           
      Dim largest As BigInteger = numbers(numbers.GetLowerBound(0))
      
      For ctr As Integer = numbers.GetLowerBound(0) + 1 To numbers.GetUpperBound(0)
         largest = BigInteger.Max(largest, numbers(ctr))
      Next
      Console.WriteLine("The values:")
      For Each number As BigInteger In numbers
         Console.WriteLine("{0,55:N0}", number)
      Next   
      Console.WriteLine()
      Console.WriteLine("The largest number of the series is:")
      Console.WriteLine("   {0:N0}", largest)   
   End Sub
End Module
' The example displays the following output:
'       The values:
'                                    -9,223,372,036,854,775,807
'                                                            -1
'                                            10,359,321,239,000
'                                                10,813,504,144
'                                            70,366,596,661,249
'            85,070,591,730,234,615,852,008,593,798,364,921,858
'       
'       The largest number of the series is:
'          85,070,591,730,234,615,852,008,593,798,364,921,858
	Remarks
This method corresponds to the Math.Max method for primitive numeric types.