BigInteger.Min(BigInteger, BigInteger) Method  
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Returns the smaller of two BigInteger values.
public:
 static System::Numerics::BigInteger Min(System::Numerics::BigInteger left, System::Numerics::BigInteger right);public:
 static System::Numerics::BigInteger Min(System::Numerics::BigInteger left, System::Numerics::BigInteger right) = System::Numerics::INumber<System::Numerics::BigInteger>::Min;public static System.Numerics.BigInteger Min(System.Numerics.BigInteger left, System.Numerics.BigInteger right);static member Min : System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigIntegerPublic Shared Function Min (left As BigInteger, right As BigInteger) As BigIntegerParameters
- left
- BigInteger
The first value to compare.
- right
- BigInteger
The second value to compare.
Returns
The left or right parameter, whichever is smaller.
Implements
Examples
The following example uses the Min method to select the smallest number in an array of BigInteger values.
using System;
using System.Numerics;
public class Example
{
   public static void Main()
   {
      BigInteger[] numbers = { Int64.MaxValue * BigInteger.MinusOne,
                               BigInteger.MinusOne,
                               10359321239000,
                               BigInteger.Pow(103988, 2),
                               BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue),
                               BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2),
                                              BigInteger.Pow(Int32.MaxValue, 2)),
                               BigInteger.Zero };
      if (numbers.Length < 2)
      {
         Console.WriteLine("Cannot determine which is the smaller of {0} numbers.",
                            numbers.Length);
         return;
      }
      BigInteger smallest = numbers[numbers.GetLowerBound(0)];
      for (int ctr = numbers.GetLowerBound(0) + 1; ctr <= numbers.GetUpperBound(0); ctr++)
         smallest = BigInteger.Min(smallest, numbers[ctr]);
      Console.WriteLine("The values:");
      foreach (BigInteger number in numbers)
         Console.WriteLine("{0,55:N0}", number);
      Console.WriteLine("\nThe smallest number of the series is:");
      Console.WriteLine("   {0:N0}", smallest);
   }
}
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//                                                             0
//
//       The smallest number of the series is:
//          -9,223,372,036,854,775,807.
open System
open System.Numerics
let numbers =
    [| bigint Int64.MaxValue * BigInteger.MinusOne
       BigInteger.MinusOne
       10359321239000I
       BigInteger.Pow(103988I, 2)
       BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue)
       BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), BigInteger.Pow(Int32.MaxValue, 2))
       BigInteger.Zero |]
if numbers.Length < 2 then
    printfn $"Cannot determine which is the smaller of {numbers.Length} numbers."
else
    let mutable smallest = numbers[0]
    for ctr = 1 to numbers.Length - 1 do
        smallest <- BigInteger.Min(smallest, numbers[ctr])
    printfn "The values:"
    for number in numbers do
        printfn $"{number, 55:N0}"
    printfn "\nThe smallest number of the series is:"
    printfn $"   {smallest:N0}"
// The example displays the following output:
//       The values:
//                                    -9,223,372,036,854,775,807
//                                                            -1
//                                            10,359,321,239,000
//                                                10,813,504,144
//                                            70,366,596,661,249
//            85,070,591,730,234,615,852,008,593,798,364,921,858
//                                                             0
//
//       The smallest number of the series is:
//          -9,223,372,036,854,775,807.
Imports System.Numerics
Module Example
   Public Sub Main()
      Dim numbers() As BigInteger = { Int64.MaxValue * BigInteger.MinusOne, 
                                      BigInteger.MinusOne, 
                                      10359321239000, 
                                      BigInteger.Pow(103988, 2),
                                      BigInteger.Multiply(Int32.MaxValue, Int16.MaxValue), 
                                      BigInteger.Add(BigInteger.Pow(Int64.MaxValue, 2), 
                                                     BigInteger.Pow(Int32.MaxValue, 2)),
                                      BigInteger.Zero }
      If numbers.Length < 2 Then 
         Console.WriteLine("Cannot determine which is the smaller of {0} numbers.",
                            numbers.Length)
         Exit Sub
      End If
           
      Dim smallest As BigInteger = numbers(numbers.GetLowerBound(0))
      
      For ctr As Integer = numbers.GetLowerBound(0) + 1 To numbers.GetUpperBound(0)
         smallest = BigInteger.Min(smallest, numbers(ctr))
      Next
      Console.WriteLine("The values:")
      For Each number As BigInteger In numbers
         Console.WriteLine("{0,55:N0}", number)
      Next   
      Console.WriteLine()
      Console.WriteLine("The smallest number of the series is:")
      Console.WriteLine("   {0:N0}", smallest)   
   End Sub
End Module
' The example displays the following output:
'       The values:
'                                    -9,223,372,036,854,775,807
'                                                            -1
'                                            10,359,321,239,000
'                                                10,813,504,144
'                                            70,366,596,661,249
'            85,070,591,730,234,615,852,008,593,798,364,921,858
'                                                             0
'       
'       The smallest number of the series is:
'          -9,223,372,036,854,775,807.
Remarks
This method corresponds to the Math.Min method for primitive numeric types.