Math.Exp(Double) Method 
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Returns e raised to the specified power.
public:
 static double Exp(double d);public static double Exp(double d);static member Exp : double -> doublePublic Shared Function Exp (d As Double) As DoubleParameters
- d
- Double
A number specifying a power.
Returns
The number e raised to the power d. If d equals NaN or PositiveInfinity, that value is returned. If d equals NegativeInfinity, 0 is returned.
Examples
The following example uses Exp to evaluate certain exponential and logarithmic identities for selected values.
// Example for the Math.Exp( double ) method.
using System;
class ExpDemo
{
    public static void Main()
    {
        Console.WriteLine(
            "This example of Math.Exp( double ) " +
            "generates the following output.\n" );
        Console.WriteLine(
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " +
            "with selected values for X:" );
        UseLnExp(0.1);
        UseLnExp(1.2);
        UseLnExp(4.9);
        UseLnExp(9.9);
        Console.WriteLine(
            "\nEvaluate these identities with " +
            "selected values for X and Y:" );
        Console.WriteLine( "   (e ^ X) * (e ^ Y) == e ^ (X + Y)" );
        Console.WriteLine( "   (e ^ X) ^ Y == e ^ (X * Y)" );
        Console.WriteLine( "   X ^ Y == e ^ (Y * ln(X))" );
        UseTwoArgs(0.1, 1.2);
        UseTwoArgs(1.2, 4.9);
        UseTwoArgs(4.9, 9.9);
    }
    // Evaluate logarithmic/exponential identity with a given argument.
    static void UseLnExp(double arg)
    {
        // Evaluate e ^ ln(X) == ln(e ^ X) == X.
        Console.WriteLine(
            "\n      Math.Exp(Math.Log({0})) == {1:E16}\n" +
            "      Math.Log(Math.Exp({0})) == {2:E16}",
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)) );
    }
    // Evaluate exponential identities that are functions of two arguments.
    static void UseTwoArgs(double argX, double argY)
    {
        // Evaluate (e ^ X) * (e ^ Y) == e ^ (X + Y).
        Console.WriteLine(
            "\nMath.Exp({0}) * Math.Exp({1}) == {2:E16}" +
            "\n          Math.Exp({0} + {1}) == {3:E16}",
            argX, argY, Math.Exp(argX) * Math.Exp(argY),
            Math.Exp(argX + argY) );
        // Evaluate (e ^ X) ^ Y == e ^ (X * Y).
        Console.WriteLine(
            " Math.Pow(Math.Exp({0}), {1}) == {2:E16}" +
            "\n          Math.Exp({0} * {1}) == {3:E16}",
            argX, argY, Math.Pow(Math.Exp(argX), argY),
            Math.Exp(argX * argY) );
        // Evaluate X ^ Y == e ^ (Y * ln(X)).
        Console.WriteLine(
            "           Math.Pow({0}, {1}) == {2:E16}" +
            "\nMath.Exp({1} * Math.Log({0})) == {3:E16}",
            argX, argY, Math.Pow(argX, argY),
            Math.Exp(argY * Math.Log(argX)) );
    }
}
/*
This example of Math.Exp( double ) generates the following output.
Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
      Math.Exp(Math.Log(0.1)) == 1.0000000000000001E-001
      Math.Log(Math.Exp(0.1)) == 1.0000000000000008E-001
      Math.Exp(Math.Log(1.2)) == 1.2000000000000000E+000
      Math.Log(Math.Exp(1.2)) == 1.2000000000000000E+000
      Math.Exp(Math.Log(4.9)) == 4.9000000000000012E+000
      Math.Log(Math.Exp(4.9)) == 4.9000000000000004E+000
      Math.Exp(Math.Log(9.9)) == 9.9000000000000004E+000
      Math.Log(Math.Exp(9.9)) == 9.9000000000000004E+000
Evaluate these identities with selected values for X and Y:
   (e ^ X) * (e ^ Y) == e ^ (X + Y)
   (e ^ X) ^ Y == e ^ (X * Y)
   X ^ Y == e ^ (Y * ln(X))
Math.Exp(0.1) * Math.Exp(1.2) == 3.6692966676192444E+000
          Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000
 Math.Pow(Math.Exp(0.1), 1.2) == 1.1274968515793757E+000
          Math.Exp(0.1 * 1.2) == 1.1274968515793757E+000
           Math.Pow(0.1, 1.2) == 6.3095734448019331E-002
Math.Exp(1.2 * Math.Log(0.1)) == 6.3095734448019344E-002
Math.Exp(1.2) * Math.Exp(4.9) == 4.4585777008251705E+002
          Math.Exp(1.2 + 4.9) == 4.4585777008251716E+002
 Math.Pow(Math.Exp(1.2), 4.9) == 3.5780924170885260E+002
          Math.Exp(1.2 * 4.9) == 3.5780924170885277E+002
           Math.Pow(1.2, 4.9) == 2.4433636334442981E+000
Math.Exp(4.9 * Math.Log(1.2)) == 2.4433636334442981E+000
Math.Exp(4.9) * Math.Exp(9.9) == 2.6764450551890982E+006
          Math.Exp(4.9 + 9.9) == 2.6764450551891015E+006
 Math.Pow(Math.Exp(4.9), 9.9) == 1.1684908531676833E+021
          Math.Exp(4.9 * 9.9) == 1.1684908531676829E+021
           Math.Pow(4.9, 9.9) == 6.8067718210957060E+006
Math.Exp(9.9 * Math.Log(4.9)) == 6.8067718210956985E+006
*/
// Example for the Math.Exp( double ) method.
// The exp function may be used instead.
open System
printfn "This example of Math.Exp( double ) generates the following output.\n"
printfn "Evaluate [e ^ ln(X) = ln(e ^ X) = X] with selected values for X:"
// Evaluate logarithmic/exponential identity with a given argument.
let useLnExp arg =
    // Evaluate e ^ ln(X) = ln(e ^ X) = X.
    printfn $"\n      Math.Exp(Math.Log({arg})) = {Math.Exp(Math.Log arg):E16}\n      Math.Log(Math.Exp({arg})) = {Math.Log(Math.Exp arg):E16}"
// Evaluate exponential identities that are functions of two arguments.
let useTwoArgs argX argY =
    // Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
    printfn $"""
Math.Exp({argX}) * Math.Exp({argY}) = {Math.Exp argX * Math.Exp argY:E16}" +
          Math.Exp({argX} + {argY}) = {Math.Exp(argX + argY):E16}"""
    // Evaluate (e ^ X) ^ Y = e ^ (X * Y).
    printfn $" Math.Pow(Math.Exp({argX}), {argY}) = {Math.Pow(Math.Exp argX, argY):E16}\n          Math.Exp({argX} * {argY}) = {Math.Exp(argX * argY):E16}"
    // Evaluate X ^ Y = e ^ (Y * ln(X)).
    printfn $"           Math.Pow({argX}, {argY}) = {Math.Pow(argX, argY):E16}\nMath.Exp({argY} * Math.Log({argX})) = {Math.Exp(argY * Math.Log argX):E16}"
useLnExp 0.1
useLnExp 1.2
useLnExp 4.9
useLnExp 9.9
printfn "\nEvaluate these identities with selected values for X and Y:"
printfn "   (e ^ X) * (e ^ Y) = e ^ (X + Y)"
printfn "   (e ^ X) ^ Y = e ^ (X * Y)"
printfn "   X ^ Y = e ^ (Y * ln(X))"
useTwoArgs 0.1 1.2
useTwoArgs 1.2 4.9
useTwoArgs 4.9 9.9
// This example of Math.Exp( double ) generates the following output.
//
// Evaluate [e ^ ln(X) = ln(e ^ X) = X] with selected values for X:
//
//       Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
//       Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
//
//       Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
//       Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
//
//       Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
//       Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
//
//       Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
//       Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
//
// Evaluate these identities with selected values for X and Y:
//    (e ^ X) * (e ^ Y) = e ^ (X + Y)
//    (e ^ X) ^ Y = e ^ (X * Y)
//    X ^ Y = e ^ (Y * ln(X))
//
// Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
//           Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
//  Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
//           Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
//            Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
// Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
//
// Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
//           Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
//  Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
//           Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
//            Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
// Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
//
// Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
//           Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
//  Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
//           Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
//            Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
// Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006
' Example for the Math.Exp( Double ) method.
Module ExpDemo
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Exp( Double ) " & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate [e ^ ln(X) == ln(e ^ X) == X] " & _
            "with selected values for X:")
        UseLnExp(0.1)
        UseLnExp(1.2)
        UseLnExp(4.9)
        UseLnExp(9.9)
          
        Console.WriteLine( vbCrLf & _
            "Evaluate these identities with selected values for X and Y:")
        Console.WriteLine("   (e ^ X) * (e ^ Y) = e ^ (X + Y)")
        Console.WriteLine("   (e ^ X) ^ Y = e ^ (X * Y)")
        Console.WriteLine("   X ^ Y = e ^ (Y * ln(X))")
          
        UseTwoArgs(0.1, 1.2)
        UseTwoArgs(1.2, 4.9)
        UseTwoArgs(4.9, 9.9)
    End Sub
       
    ' Evaluate logarithmic/exponential identity with a given argument.
    Sub UseLnExp(arg As Double)
        ' Evaluate e ^ ln(X) = ln(e ^ X) = X.
        Console.WriteLine( _
            vbCrLf & "      Math.Exp(Math.Log({0})) = {1:E16}" + _
            vbCrLf & "      Math.Log(Math.Exp({0})) = {2:E16}", _
            arg, Math.Exp(Math.Log(arg)), Math.Log(Math.Exp(arg)))
    End Sub
       
    ' Evaluate exponential identities that are functions of two arguments.
    Sub UseTwoArgs(argX As Double, argY As Double)
        ' Evaluate (e ^ X) * (e ^ Y) = e ^ (X + Y).
        Console.WriteLine( _
            vbCrLf & "Math.Exp({0}) * Math.Exp({1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} + {1}) = {3:E16}", _
            argX, argY, Math.Exp(argX) * Math.Exp(argY), _
            Math.Exp((argX + argY)))
          
        ' Evaluate (e ^ X) ^ Y = e ^ (X * Y).
        Console.WriteLine( _
            " Math.Pow(Math.Exp({0}), {1}) = {2:E16}" + _
            vbCrLf & "          Math.Exp({0} * {1}) = {3:E16}", _
            argX, argY, Math.Pow(Math.Exp(argX), argY), _
            Math.Exp((argX * argY)))
          
        ' Evaluate X ^ Y = e ^ (Y * ln(X)).
        Console.WriteLine( _
            "           Math.Pow({0}, {1}) = {2:E16}" + _
            vbCrLf & "Math.Exp({1} * Math.Log({0})) = {3:E16}", _
            argX, argY, Math.Pow(argX, argY), _
            Math.Exp((argY * Math.Log(argX))))
    End Sub
End Module 'ExpDemo
' This example of Math.Exp( Double ) generates the following output.
' 
' Evaluate [e ^ ln(X) == ln(e ^ X) == X] with selected values for X:
' 
'       Math.Exp(Math.Log(0.1)) = 1.0000000000000001E-001
'       Math.Log(Math.Exp(0.1)) = 1.0000000000000008E-001
' 
'       Math.Exp(Math.Log(1.2)) = 1.2000000000000000E+000
'       Math.Log(Math.Exp(1.2)) = 1.2000000000000000E+000
' 
'       Math.Exp(Math.Log(4.9)) = 4.9000000000000012E+000
'       Math.Log(Math.Exp(4.9)) = 4.9000000000000004E+000
' 
'       Math.Exp(Math.Log(9.9)) = 9.9000000000000004E+000
'       Math.Log(Math.Exp(9.9)) = 9.9000000000000004E+000
' 
' Evaluate these identities with selected values for X and Y:
'    (e ^ X) * (e ^ Y) = e ^ (X + Y)
'    (e ^ X) ^ Y = e ^ (X * Y)
'    X ^ Y = e ^ (Y * ln(X))
' 
' Math.Exp(0.1) * Math.Exp(1.2) = 3.6692966676192444E+000
'           Math.Exp(0.1 + 1.2) = 3.6692966676192444E+000
'  Math.Pow(Math.Exp(0.1), 1.2) = 1.1274968515793757E+000
'           Math.Exp(0.1 * 1.2) = 1.1274968515793757E+000
'            Math.Pow(0.1, 1.2) = 6.3095734448019331E-002
' Math.Exp(1.2 * Math.Log(0.1)) = 6.3095734448019344E-002
' 
' Math.Exp(1.2) * Math.Exp(4.9) = 4.4585777008251705E+002
'           Math.Exp(1.2 + 4.9) = 4.4585777008251716E+002
'  Math.Pow(Math.Exp(1.2), 4.9) = 3.5780924170885260E+002
'           Math.Exp(1.2 * 4.9) = 3.5780924170885277E+002
'            Math.Pow(1.2, 4.9) = 2.4433636334442981E+000
' Math.Exp(4.9 * Math.Log(1.2)) = 2.4433636334442981E+000
' 
' Math.Exp(4.9) * Math.Exp(9.9) = 2.6764450551890982E+006
'           Math.Exp(4.9 + 9.9) = 2.6764450551891015E+006
'  Math.Pow(Math.Exp(4.9), 9.9) = 1.1684908531676833E+021
'           Math.Exp(4.9 * 9.9) = 1.1684908531676829E+021
'            Math.Pow(4.9, 9.9) = 6.8067718210957060E+006
' Math.Exp(9.9 * Math.Log(4.9)) = 6.8067718210956985E+006
Remarks
e is a mathematical constant whose value is approximately 2.71828.
Use the Pow method to calculate powers of other bases.
This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.