LearningModelSession.EvaluateAsync(LearningModelBinding, String) 方法    
定义
重要
一些信息与预发行产品相关,相应产品在发行之前可能会进行重大修改。 对于此处提供的信息,Microsoft 不作任何明示或暗示的担保。
使用 绑定中已绑定的特征值异步评估机器学习模型。
public:
 virtual IAsyncOperation<LearningModelEvaluationResult ^> ^ EvaluateAsync(LearningModelBinding ^ bindings, Platform::String ^ correlationId) = EvaluateAsync;
	/// [Windows.Foundation.Metadata.RemoteAsync]
IAsyncOperation<LearningModelEvaluationResult> EvaluateAsync(LearningModelBinding const& bindings, winrt::hstring const& correlationId);
	[Windows.Foundation.Metadata.RemoteAsync]
public IAsyncOperation<LearningModelEvaluationResult> EvaluateAsync(LearningModelBinding bindings, string correlationId);
	function evaluateAsync(bindings, correlationId)
	Public Function EvaluateAsync (bindings As LearningModelBinding, correlationId As String) As IAsyncOperation(Of LearningModelEvaluationResult)
	参数
- bindings
 - LearningModelBinding
 
绑定到命名输入和输出特征的值。
- correlationId
 - 
				
				String
Platform::String
winrt::hstring
 
用于连接输出结果的可选用户提供的字符串。
返回
评估中的 LearningModelEvaluationResult 。
- 属性
 
示例
以下示例从模型中检索第一个输入和输出特征,创建输出帧,绑定输入和输出特征,并评估模型。
private async Task EvaluateModelAsync(
    VideoFrame _inputFrame, 
    LearningModelSession _session, 
    IReadOnlyList<ILearningModelFeatureDescriptor> _inputFeatures, 
    IReadOnlyList<ILearningModelFeatureDescriptor> _outputFeatures,
    LearningModel _model)
{
    ImageFeatureDescriptor _inputImageDescription;
    TensorFeatureDescriptor _outputImageDescription;
    LearningModelBinding _binding = null;
    VideoFrame _outputFrame = null;
    LearningModelEvaluationResult _results;
    try
    {
        // Retrieve the first input feature which is an image
        _inputImageDescription =
            _inputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Image)
            as ImageFeatureDescriptor;
        // Retrieve the first output feature which is a tensor
        _outputImageDescription =
            _outputFeatures.FirstOrDefault(feature => feature.Kind == LearningModelFeatureKind.Tensor)
            as TensorFeatureDescriptor;
        // Create output frame based on expected image width and height
        _outputFrame = new VideoFrame(
            BitmapPixelFormat.Bgra8, 
            (int)_inputImageDescription.Width, 
            (int)_inputImageDescription.Height);
        // Create binding and then bind input/output features
        _binding = new LearningModelBinding(_session);
        _binding.Bind(_inputImageDescription.Name, _inputFrame);
        _binding.Bind(_outputImageDescription.Name, _outputFrame);
        // Evaluate and get the results
        _results = await _session.EvaluateAsync(_binding, "test");
    }
    catch (Exception ex)
    {
        StatusBlock.Text = $"error: {ex.Message}";
        _model = null;
    }
}
	注解
Windows Server
若要在 Windows Server 上使用此 API,必须使用具有桌面体验的 Windows Server 2019。
线程安全
此 API 是线程安全的。