你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

如何使用代码解释器工具

Azure AI 代理支持使用代码解释器工具,该工具允许代理在安全的沙盒执行环境中编写和运行代码。 这使代理能够根据用户请求执行数据分析、数学计算或文件作等任务。 本文提供分步说明和代码示例,用于通过 Azure AI 代理启用和使用代码解释器工具。

将代码解释器工具与代理配合使用

可以使用本文顶部列出的代码示例或 Azure AI Foundry 门户以编程方式将代码解释器工具添加到代理。 如果要使用门户:

  1. 在您的代理屏幕中,向下滚动右侧的设置窗格至操作。 然后选择“添加”。

    显示 Azure AI Foundry 门户中可用工具类别的屏幕截图。

  2. 选择“代码解释器”,然后按照提示添加该工具。

    显示 Azure AI Foundry 门户中可用的操作工具的屏幕截图。

  3. 可以选择上传文件,以供代理从数据集读取和解释信息、生成代码,以及使用数据创建图形和图表。

    显示代码解释器上传页的屏幕截图。

初始化

代码首先设置必要的导入并初始化 AI 项目客户端:

import os
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import CodeInterpreterTool


# Create an Azure AI Client from an endpoint, copied from your Azure AI Foundry project.
# You need to login to Azure subscription via Azure CLI and set the environment variables
project_endpoint = os.environ["PROJECT_ENDPOINT"]  # Ensure the PROJECT_ENDPOINT environment variable is set

# Create an AIProjectClient instance
project_client = AIProjectClient(
    endpoint=project_endpoint,
    credential=DefaultAzureCredential(),  # Use Azure Default Credential for authentication
)

文件上传

此示例上传数据文件进行分析:

file = project_client.agents.files.upload_and_poll(
    file_path="nifty_500_quarterly_results.csv", 
    purpose=FilePurpose.AGENTS
)

代码解释器设置

代码解释器工具使用上传的文件进行初始化:

code_interpreter = CodeInterpreterTool(file_ids=[file.id])

代理创建

使用代码解释器功能创建代理:

agent = project_client.agents.create_agent(
    model=os.environ["MODEL_DEPLOYMENT_NAME"],
    name="my-agent",
    instructions="You are helpful agent",
    tools=code_interpreter.definitions,
    tool_resources=code_interpreter.resources,
)

线程管理

该代码创建会话线程和初始消息:

thread = project_client.agents.threads.create()
message = project_client.agents.messages.create(
    thread_id=thread.id,
    role=MessageRole.USER,
    content="Could you please create bar chart in TRANSPORTATION sector for the operating profit from the uploaded csv file and provide file to me?",
)

消息处理

创建运行以处理消息并执行代码:

run = project_client.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)

文件处理

代码处理输出文件和注释:

messages = project_client.agents.messages.list(thread_id=thread.id)

# Save generated image files
for image_content in messages.image_contents:
    file_id = image_content.image_file.file_id
    file_name = f"{file_id}_image_file.png"
    project_client.agents.files.save(file_id=file_id, file_name=file_name)

# Process file path annotations
for file_path_annotation in messages.file_path_annotations:
    print(f"File Paths:")
    print(f"Type: {file_path_annotation.type}")
    print(f"Text: {file_path_annotation.text}")
    print(f"File ID: {file_path_annotation.file_path.file_id}")

清理行动

完成交互后,代码会正确清理资源:

project_client.agents.files.delete(file.id)
project_client.agents.delete_agent(agent.id)

这可确保适当的资源管理并防止不必要的资源消耗。

创建客户端和代理

首先,使用 appsettings.json 设置配置,创建一个 PersistentAgentsClient,然后使用启用代码解释器工具创建 PersistentAgent

using Azure;
using Azure.AI.Agents.Persistent;
using Azure.Identity;
using Microsoft.Extensions.Configuration;
using System.Diagnostics;

IConfigurationRoot configuration = new ConfigurationBuilder()
    .SetBasePath(AppContext.BaseDirectory)
    .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
    .Build();

var projectEndpoint = configuration["ProjectEndpoint"];
var modelDeploymentName = configuration["ModelDeploymentName"];

PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());

PersistentAgent agent = client.Administration.CreateAgent(
    model: modelDeploymentName,
    name: "My Friendly Test Agent",
    instructions: "You politely help with math questions. Use the code interpreter tool when asked to visualize numbers.",
    tools: [new CodeInterpreterToolDefinition()]
);

创建线程并添加消息

接下来,为对话创建一个 PersistentAgentThread 并添加初始用户消息。

PersistentAgentThread thread = client.Threads.CreateThread();

client.Messages.CreateMessage(
    thread.Id,
    MessageRole.User,
    "Hi, Agent! Draw a graph for a line with a slope of 4 and y-intercept of 9.");

创建和监视运行

然后,为线程和代理创建一个 ThreadRun 。 轮询运行的状态,直到它完成或者它需要你采取措施。

ThreadRun run = client.Runs.CreateRun(
    thread.Id,
    agent.Id,
    additionalInstructions: "Please address the user as Jane Doe. The user has a premium account.");

do
{
    Thread.Sleep(TimeSpan.FromMilliseconds(500));
    run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
    || run.Status == RunStatus.InProgress
    || run.Status == RunStatus.RequiresAction);

处理结果并处理文件

运行完成后,从线程检索所有消息。 循环访问消息以显示文本内容,并通过在本地保存和打开它们来处理任何生成的图像文件。

Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
    threadId: thread.Id,
    order: ListSortOrder.Ascending);

foreach (PersistentThreadMessage threadMessage in messages)
{
    foreach (MessageContent content in threadMessage.ContentItems)
    {
        switch (content)
        {
            case MessageTextContent textItem:
                Console.WriteLine($"[{threadMessage.Role}]: {textItem.Text}");
                break;
            case MessageImageFileContent imageFileContent:
                Console.WriteLine($"[{threadMessage.Role}]: Image content file ID = {imageFileContent.FileId}");
                BinaryData imageContent = client.Files.GetFileContent(imageFileContent.FileId);
                string tempFilePath = Path.Combine(AppContext.BaseDirectory, $"{Guid.NewGuid()}.png");
                File.WriteAllBytes(tempFilePath, imageContent.ToArray());
                client.Files.DeleteFile(imageFileContent.FileId);

                ProcessStartInfo psi = new()
                {
                    FileName = tempFilePath,
                    UseShellExecute = true
                };
                Process.Start(psi);
                break;
        }
    }
}

清理资源

最后,删除线程和代理以清理此示例中创建的资源。

    client.Threads.DeleteThread(threadId: thread.Id);
    client.Administration.DeleteAgent(agentId: agent.Id);

创建项目客户端

若要使用代码解释器,首先需要创建一个项目客户端,其中包含 AI 项目的终结点,并将用于对 API 调用进行身份验证。

const { AgentsClient, isOutputOfType, ToolUtility } = require("@azure/ai-agents");
const { delay } = require("@azure/core-util");
const { DefaultAzureCredential } = require("@azure/identity");
const fs = require("fs");
const path = require("node:path");
require("dotenv/config");

const projectEndpoint = process.env["PROJECT_ENDPOINT"];

// Create an Azure AI Client
const client = new AgentsClient(projectEndpoint, new DefaultAzureCredential());

上传文件

可以上传文件,然后由代理或消息引用。 上传后,可将其添加到工具实用工具进行引用。

// Upload file and wait for it to be processed
const filePath = "./data/nifty500QuarterlyResults.csv";
const localFileStream = fs.createReadStream(filePath);
const localFile = await client.files.upload(localFileStream, "assistants", {
  fileName: "localFile",
});

console.log(`Uploaded local file, file ID : ${localFile.id}`);

使用代码解释器工具创建代理

// Create code interpreter tool
const codeInterpreterTool = ToolUtility.createCodeInterpreterTool([localFile.id]);

// Notice that CodeInterpreter must be enabled in the agent creation, otherwise the agent will not be able to see the file attachment
const agent = await client.createAgent("gpt-4o", {
  name: "my-agent",
  instructions: "You are a helpful agent",
  tools: [codeInterpreterTool.definition],
  toolResources: codeInterpreterTool.resources,
});
console.log(`Created agent, agent ID: ${agent.id}`);

创建线程、消息并获取代理响应

// Create a thread
const thread = await client.threads.create();
console.log(`Created thread, thread ID: ${thread.id}`);

// Create a message
const message = await client.messages.create(
  thread.id,
  "user",
  "Could you please create a bar chart in the TRANSPORTATION sector for the operating profit from the uploaded CSV file and provide the file to me?",
  {
    attachments: [
      {
        fileId: localFile.id,
        tools: [codeInterpreterTool.definition],
      },
    ],
  },
);

console.log(`Created message, message ID: ${message.id}`);

// Create and execute a run
let run = await client.runs.create(thread.id, agent.id);
while (run.status === "queued" || run.status === "in_progress") {
  await delay(1000);
  run = await client.runs.get(thread.id, run.id);
}
if (run.status === "failed") {
  // Check if you got "Rate limit is exceeded.", then you want to get more quota
  console.log(`Run failed: ${run.lastError}`);
}
console.log(`Run finished with status: ${run.status}`);

// Delete the original file from the agent to free up space (note: this does not delete your version of the file)
await client.files.delete(localFile.id);
console.log(`Deleted file, file ID: ${localFile.id}`);

// Print the messages from the agent
const messagesIterator = client.messages.list(thread.id);
const allMessages = [];
for await (const m of messagesIterator) {
  allMessages.push(m);
}
console.log("Messages:", allMessages);

// Get most recent message from the assistant
const assistantMessage = allMessages.find((msg) => msg.role === "assistant");
if (assistantMessage) {
  const textContent = assistantMessage.content.find((content) => isOutputOfType(content, "text"));
  if (textContent) {
    console.log(`Last message: ${textContent.text.value}`);
  }
}

// Save the newly created file
console.log(`Saving new files...`);
const imageFile = allMessages[0].content[0].imageFile;
console.log(`Image file ID : ${imageFile.fileId}`);
const imageFileName = path.resolve(
  "./data/" + (await client.files.get(imageFile.fileId)).filename + "ImageFile.png",
);

const fileContent = await (await client.files.getContent(imageFile.fileId).asNodeStream()).body;
if (fileContent) {
  const chunks = [];
  for await (const chunk of fileContent) {
    chunks.push(Buffer.isBuffer(chunk) ? chunk : Buffer.from(chunk));
  }
  const buffer = Buffer.concat(chunks);
  fs.writeFileSync(imageFileName, buffer);
} else {
  console.error("Failed to retrieve file content: fileContent is undefined");
}
console.log(`Saved image file to: ${imageFileName}`);

// Iterate through messages and print details for each annotation
console.log(`Message Details:`);
allMessages.forEach((m) => {
  console.log(`File Paths:`);
  console.log(`Type: ${m.content[0].type}`);
  if (isOutputOfType(m.content[0], "text")) {
    const textContent = m.content[0];
    console.log(`Text: ${textContent.text.value}`);
  }
  console.log(`File ID: ${m.id}`);
});

// Delete the agent once done
await client.deleteAgent(agent.id);
console.log(`Deleted agent, agent ID: ${agent.id}`);

请按照 REST API 快速入门 为环境变量 AGENT_TOKENAZURE_AI_FOUNDRY_PROJECT_ENDPOINTAPI_VERSION 设置正确的值。

上传文件

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/files?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -F purpose="assistants" \
  -F file="@c:\\path_to_file\\file.csv"

使用代码解释器工具创建代理

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/assistants?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "instructions": "You are an AI assistant that can write code to help answer math questions.",
    "tools": [
      { "type": "code_interpreter" }
    ],
    "model": "gpt-4o-mini",
    "tool_resources"{
      "code interpreter": {
          "file_ids": ["assistant-1234"]
      }
    }
  }'

创建线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d ''

将用户问题添加到线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
      "role": "user",
      "content": "I need to solve the equation `3x + 11 = 14`. Can you help me?"
    }'

运行线程

curl --request POST \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "assistant_id": "asst_abc123",
  }'

获取运行状态

curl --request GET \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs/run_abc123?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN"

检索代理响应

curl --request GET \
  --url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
  -H "Authorization: Bearer $AGENT_TOKEN"

下载示例文件

可以上传文件,然后由代理或消息引用。 上传后,可将其添加到工具实用工具进行引用。 可以在 GitHub 上找到可下载的示例文件。

代码示例

package com.example.agents;

import com.azure.ai.agents.persistent.FilesClient;
import com.azure.ai.agents.persistent.MessagesClient;
import com.azure.ai.agents.persistent.PersistentAgentsAdministrationClient;
import com.azure.ai.agents.persistent.PersistentAgentsClient;
import com.azure.ai.agents.persistent.PersistentAgentsClientBuilder;
import com.azure.ai.agents.persistent.RunsClient;
import com.azure.ai.agents.persistent.ThreadsClient;
import com.azure.ai.agents.persistent.models.CodeInterpreterToolDefinition;
import com.azure.ai.agents.persistent.models.CreateAgentOptions;
import com.azure.ai.agents.persistent.models.CreateRunOptions;
import com.azure.ai.agents.persistent.models.FileDetails;
import com.azure.ai.agents.persistent.models.FileInfo;
import com.azure.ai.agents.persistent.models.FilePurpose;
import com.azure.ai.agents.persistent.models.MessageAttachment;
import com.azure.ai.agents.persistent.models.MessageImageFileContent;
import com.azure.ai.agents.persistent.models.MessageRole;
import com.azure.ai.agents.persistent.models.MessageTextContent;
import com.azure.ai.agents.persistent.models.PersistentAgent;
import com.azure.ai.agents.persistent.models.PersistentAgentThread;
import com.azure.ai.agents.persistent.models.RunStatus;
import com.azure.ai.agents.persistent.models.ThreadMessage;
import com.azure.ai.agents.persistent.models.ThreadRun;
import com.azure.ai.agents.persistent.models.UploadFileRequest;
import com.azure.ai.agents.persistent.models.MessageContent;
import com.azure.core.http.rest.PagedIterable;
import com.azure.core.util.BinaryData;
import com.azure.identity.DefaultAzureCredentialBuilder;

import java.net.URL;
import java.io.File;
import java.io.FileNotFoundException;
import java.net.URISyntaxException;
import java.nio.file.Path;
import java.util.Arrays;

public class AgentExample {

    public static void main(String[] args) throws FileNotFoundException, URISyntaxException {

        // variables for authenticating requests to the agent service 
        String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
        String modelName = System.getenv("MODEL_DEPLOYMENT_NAME");

        PersistentAgentsClientBuilder clientBuilder = new PersistentAgentsClientBuilder().endpoint(projectEndpoint)
            .credential(new DefaultAzureCredentialBuilder().build());
        PersistentAgentsClient agentsClient = clientBuilder.buildClient();
        PersistentAgentsAdministrationClient administrationClient = agentsClient.getPersistentAgentsAdministrationClient();
        ThreadsClient threadsClient = agentsClient.getThreadsClient();
        MessagesClient messagesClient = agentsClient.getMessagesClient();
        RunsClient runsClient = agentsClient.getRunsClient();
        FilesClient filesClient = agentsClient.getFilesClient();

        Path myFile = getFile("syntheticCompanyQuarterlyResults.csv");

        String agentName = "code_interpreter_file_attachment_example";
        CodeInterpreterToolDefinition ciTool = new CodeInterpreterToolDefinition();
        CreateAgentOptions createAgentOptions = new CreateAgentOptions(modelName).setName(agentName).setInstructions("You are a helpful agent").setTools(Arrays.asList(ciTool));
        PersistentAgent agent = administrationClient.createAgent(createAgentOptions);

        FileInfo uploadedFile = filesClient.uploadFile(new UploadFileRequest(
            new FileDetails(BinaryData.fromFile(myFile))
            .setFilename("sample.csv"), FilePurpose.AGENTS));

        MessageAttachment messageAttachment = new MessageAttachment(Arrays.asList(BinaryData.fromObject(ciTool))).setFileId(uploadedFile.getId());

        PersistentAgentThread thread = threadsClient.createThread();
        ThreadMessage createdMessage = messagesClient.createMessage(
            thread.getId(),
            MessageRole.USER,
            "Could you analyze the uploaded CSV file for me?",
            Arrays.asList(messageAttachment),
            null);

        try {
            //run agent
            CreateRunOptions createRunOptions = new CreateRunOptions(thread.getId(), agent.getId()).setAdditionalInstructions("");
            ThreadRun threadRun = runsClient.createRun(createRunOptions);

            waitForRunCompletion(thread.getId(), threadRun, runsClient);
            printRunMessages(messagesClient, thread.getId());
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        } finally {
            //cleanup
            threadsClient.deleteThread(thread.getId());
            administrationClient.deleteAgent(agent.getId());
        }
    }
    // A helper function to print messages from the agent
    public static void printRunMessages(MessagesClient messagesClient, String threadId) {

        PagedIterable<ThreadMessage> runMessages = messagesClient.listMessages(threadId);
        for (ThreadMessage message : runMessages) {
            System.out.print(String.format("%1$s - %2$s : ", message.getCreatedAt(), message.getRole()));
            for (MessageContent contentItem : message.getContent()) {
                if (contentItem instanceof MessageTextContent) {
                    System.out.print((((MessageTextContent) contentItem).getText().getValue()));
                } else if (contentItem instanceof MessageImageFileContent) {
                    String imageFileId = (((MessageImageFileContent) contentItem).getImageFile().getFileId());
                    System.out.print("Image from ID: " + imageFileId);
                }
                System.out.println();
            }
        }
    }

    // a helper function to wait until a run has completed running
    public static void waitForRunCompletion(String threadId, ThreadRun threadRun, RunsClient runsClient)
        throws InterruptedException {

        do {
            Thread.sleep(500);
            threadRun = runsClient.getRun(threadId, threadRun.getId());
        }
        while (
            threadRun.getStatus() == RunStatus.QUEUED
                || threadRun.getStatus() == RunStatus.IN_PROGRESS
                || threadRun.getStatus() == RunStatus.REQUIRES_ACTION);

        if (threadRun.getStatus() == RunStatus.FAILED) {
            System.out.println(threadRun.getLastError().getMessage());
        }
    }
    private static Path getFile(String fileName) throws FileNotFoundException, URISyntaxException {
        URL resource = AgentExample.class.getClassLoader().getResource(fileName);
        if (resource == null) {
            throw new FileNotFoundException("File not found");
        }
        File file = new File(resource.toURI());
        return file.toPath();
    }
}