本教程演示如何使用代理框架创建并发工作流。 你将学习如何实现扇出模式和扇入模式,这些模式支持并行处理,允许多个执行程序或代理同时工作,然后聚合其结果。
你将构建的内容
你将创建一个工作流,该工作流:
- 将问题作为输入(例如,“什么是温度?”)
- 同时向两位专家 AI 代理发送相同的问题(物理学家和化学家)
- 收集两个代理的响应并将其合并到单个输出中
- 使用扇出/扇入模式演示 AI 代理的并发执行
先决条件
步骤 1:安装 NuGet 包
首先,安装 .NET 项目所需的包:
dotnet add package Azure.AI.OpenAI --prerelease
dotnet add package Azure.Identity
dotnet add package Microsoft.Agents.AI.Workflows --prerelease
dotnet add package Microsoft.Extensions.AI.OpenAI --prerelease
步骤 2:设置依赖项和 Azure OpenAI
首先,使用所需的 NuGet 包和 Azure OpenAI 客户端设置项目:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.AI;
using Microsoft.Agents.AI.Workflows;
using Microsoft.Extensions.AI;
public static class Program
{
private static async Task Main()
{
// Set up the Azure OpenAI client
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT") ?? throw new Exception("AZURE_OPENAI_ENDPOINT is not set.");
var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT_NAME") ?? "gpt-4o-mini";
var chatClient = new AzureOpenAIClient(new Uri(endpoint), new AzureCliCredential())
.GetChatClient(deploymentName).AsIChatClient();
步骤 3:创建专家 AI 代理
创建两个专用 AI 代理,提供专家观点:
// Create the AI agents with specialized expertise
ChatClientAgent physicist = new(
chatClient,
name: "Physicist",
instructions: "You are an expert in physics. You answer questions from a physics perspective."
);
ChatClientAgent chemist = new(
chatClient,
name: "Chemist",
instructions: "You are an expert in chemistry. You answer questions from a chemistry perspective."
);
步骤 4:创建启动执行程序
创建一个执行程序,该执行程序通过向多个代理发送输入来启动并发处理:
var startExecutor = new ConcurrentStartExecutor();
ConcurrentStartExecutor 实现:
/// <summary>
/// Executor that starts the concurrent processing by sending messages to the agents.
/// </summary>
internal sealed class ConcurrentStartExecutor() :
Executor<string>("ConcurrentStartExecutor")
{
/// <summary>
/// Starts the concurrent processing by sending messages to the agents.
/// </summary>
/// <param name="message">The user message to process</param>
/// <param name="context">Workflow context for accessing workflow services and adding events</param>
/// <param name="cancellationToken">The <see cref="CancellationToken"/> to monitor for cancellation requests.
/// The default is <see cref="CancellationToken.None"/>.</param>
/// <returns>A task representing the asynchronous operation</returns>
public override async ValueTask HandleAsync(string message, IWorkflowContext context, CancellationToken cancellationToken = default)
{
// Broadcast the message to all connected agents. Receiving agents will queue
// the message but will not start processing until they receive a turn token.
await context.SendMessageAsync(new ChatMessage(ChatRole.User, message), cancellationToken);
// Broadcast the turn token to kick off the agents.
await context.SendMessageAsync(new TurnToken(emitEvents: true), cancellationToken);
}
}
步骤 5:创建聚合执行程序
创建一个执行程序,用于收集和合并来自多个代理的响应:
var aggregationExecutor = new ConcurrentAggregationExecutor();
ConcurrentAggregationExecutor 实现:
/// <summary>
/// Executor that aggregates the results from the concurrent agents.
/// </summary>
internal sealed class ConcurrentAggregationExecutor() :
Executor<ChatMessage>("ConcurrentAggregationExecutor")
{
private readonly List<ChatMessage> _messages = [];
/// <summary>
/// Handles incoming messages from the agents and aggregates their responses.
/// </summary>
/// <param name="message">The message from the agent</param>
/// <param name="context">Workflow context for accessing workflow services and adding events</param>
/// <param name="cancellationToken">The <see cref="CancellationToken"/> to monitor for cancellation requests.
/// The default is <see cref="CancellationToken.None"/>.</param>
/// <returns>A task representing the asynchronous operation</returns>
public override async ValueTask HandleAsync(ChatMessage message, IWorkflowContext context, CancellationToken cancellationToken = default)
{
this._messages.Add(message);
if (this._messages.Count == 2)
{
var formattedMessages = string.Join(Environment.NewLine,
this._messages.Select(m => $"{m.AuthorName}: {m.Text}"));
await context.YieldOutputAsync(formattedMessages, cancellationToken);
}
}
}
步骤 6:生成工作流
使用扇出模式和扇入边缘模式连接执行器和代理:
// Build the workflow by adding executors and connecting them
var workflow = new WorkflowBuilder(startExecutor)
.AddFanOutEdge(startExecutor, targets: [physicist, chemist])
.AddFanInEdge(aggregationExecutor, sources: [physicist, chemist])
.WithOutputFrom(aggregationExecutor)
.Build();
步骤 7:执行工作流
运行工作流,并捕获流输出。
// Execute the workflow in streaming mode
await using StreamingRun run = await InProcessExecution.StreamAsync(workflow, "What is temperature?");
await foreach (WorkflowEvent evt in run.WatchStreamAsync())
{
if (evt is WorkflowOutputEvent output)
{
Console.WriteLine($"Workflow completed with results:\n{output.Data}");
}
}
}
}
工作原理
-
扇出:
ConcurrentStartExecutor接收输入问题,扇出接口将其同时发送给物理学家和化学家代理。 - 并行处理:两个 AI 代理同时处理相同的问题,每个代理都提供其专家视角。
-
扇入:
ConcurrentAggregationExecutor从两个代理ChatMessage收集响应。 - 聚合:收到这两个响应后,聚合器将它们合并为格式化输出。
关键概念
-
Fan-Out 边:使用
AddFanOutEdge()来将相同的输入分发到多个执行器或代理。 -
Fan-In 边缘:使用
AddFanInEdge()从多个源执行器收集结果。 - AI 代理集成:可以将 AI 代理直接用作工作流中的执行程序。
-
执行程序基类:自定义执行程序继承自
Executor<TInput>并重写HandleAsync方法。 -
轮次令牌:使用
TurnToken来向代理发出信号,让他们开始处理排队的消息。 -
流式执行:用于
StreamAsync()在工作流进行时获取实时更新。
完成实现
有关此并发工作流与 AI 代理的完整工作实现,请参阅 Agent Framework 存储库中的 Concurrent/Program.cs 示例。
在 Python 实现中,你将生成一个并发工作流,该工作流通过多个并行执行程序处理数据,并聚合不同类型的结果。 此示例演示框架如何处理并发处理中的混合结果类型。
你将构建的内容
你将创建一个工作流,该工作流:
- 将数字列表作为输入
- 将列表分配到两个并行执行程序(一个计算平均值,一个计算总和)
- 将不同的结果类型(float 和 int)聚合到最终输出中
- 演示如何框架处理并发执行程序的不同结果类型
先决条件
- Python 3.10 或更高版本
- 已安装 Agent Framework Core:
pip install agent-framework-core
步骤 1:导入所需的依赖项
首先从代理框架导入必要的组件:
import asyncio
import random
from agent_framework import Executor, WorkflowBuilder, WorkflowContext, WorkflowOutputEvent, handler
from typing_extensions import Never
步骤 2:创建调度器执行器
调度程序负责将初始输入分发到多个并行执行程序:
class Dispatcher(Executor):
"""
The sole purpose of this executor is to dispatch the input of the workflow to
other executors.
"""
@handler
async def handle(self, numbers: list[int], ctx: WorkflowContext[list[int]]):
if not numbers:
raise RuntimeError("Input must be a valid list of integers.")
await ctx.send_message(numbers)
步骤 3:创建并行处理执行程序
创建两个将同时处理数据的执行程序:
class Average(Executor):
"""Calculate the average of a list of integers."""
@handler
async def handle(self, numbers: list[int], ctx: WorkflowContext[float]):
average: float = sum(numbers) / len(numbers)
await ctx.send_message(average)
class Sum(Executor):
"""Calculate the sum of a list of integers."""
@handler
async def handle(self, numbers: list[int], ctx: WorkflowContext[int]):
total: int = sum(numbers)
await ctx.send_message(total)
步骤 4:创建聚合器执行程序
聚合器从并行执行程序收集结果并生成最终输出:
class Aggregator(Executor):
"""Aggregate the results from the different tasks and yield the final output."""
@handler
async def handle(self, results: list[int | float], ctx: WorkflowContext[Never, list[int | float]]):
"""Receive the results from the source executors.
The framework will automatically collect messages from the source executors
and deliver them as a list.
Args:
results (list[int | float]): execution results from upstream executors.
The type annotation must be a list of union types that the upstream
executors will produce.
ctx (WorkflowContext[Never, list[int | float]]): A workflow context that can yield the final output.
"""
await ctx.yield_output(results)
步骤 5:生成工作流
使用扇出和扇入边缘模式连接执行程序:
async def main() -> None:
# 1) Create the executors
dispatcher = Dispatcher(id="dispatcher")
average = Average(id="average")
summation = Sum(id="summation")
aggregator = Aggregator(id="aggregator")
# 2) Build a simple fan out and fan in workflow
workflow = (
WorkflowBuilder()
.set_start_executor(dispatcher)
.add_fan_out_edges(dispatcher, [average, summation])
.add_fan_in_edges([average, summation], aggregator)
.build()
)
步骤 6:运行工作流
使用示例数据执行工作流并捕获输出:
# 3) Run the workflow
output: list[int | float] | None = None
async for event in workflow.run_stream([random.randint(1, 100) for _ in range(10)]):
if isinstance(event, WorkflowOutputEvent):
output = event.data
if output is not None:
print(output)
if __name__ == "__main__":
asyncio.run(main())
工作原理
-
扇出:接收
Dispatcher输入列表并将其同时发送到Average和Sum执行器 -
并行处理:两个执行程序同时处理相同的输入,生成不同的结果类型:
-
Average执行程序生成float结果 -
Sum执行程序生成int结果
-
-
扇入:
Aggregator接收来自两个执行器的结果,并将其作为包含两种类型的列表输出。 -
类型处理:框架使用联合类型自动处理不同的结果类型(
int | float)
关键概念
-
分布式输出:用于
add_fan_out_edges()向多个执行程序发送相同的输入 -
Fan-In 边:使用
add_fan_in_edges()从多个源执行程序中收集结果 -
联合类型:使用类型注释处理不同的结果类型,例如
list[int | float] - 并发执行:多个执行程序同时处理数据,提高性能
完成实现
有关此并发工作流的完整工作实现,请参阅 Agent Framework 存储库中的 aggregate_results_of_different_types.py 示例。