ImageModelSettingsClassification Class   
Model settings for AutoML Image Classification tasks.
Constructor
ImageModelSettingsClassification(*, advanced_settings: str | None = None, ams_gradient: bool | None = None, beta1: float | None = None, beta2: float | None = None, checkpoint_frequency: int | None = None, checkpoint_run_id: str | None = None, distributed: bool | None = None, early_stopping: bool | None = None, early_stopping_delay: int | None = None, early_stopping_patience: int | None = None, enable_onnx_normalization: bool | None = None, evaluation_frequency: int | None = None, gradient_accumulation_step: int | None = None, layers_to_freeze: int | None = None, learning_rate: float | None = None, learning_rate_scheduler: LearningRateScheduler | None = None, model_name: str | None = None, momentum: float | None = None, nesterov: bool | None = None, number_of_epochs: int | None = None, number_of_workers: int | None = None, optimizer: StochasticOptimizer | None = None, random_seed: int | None = None, step_lr_gamma: float | None = None, step_lr_step_size: int | None = None, training_batch_size: int | None = None, validation_batch_size: int | None = None, warmup_cosine_lr_cycles: float | None = None, warmup_cosine_lr_warmup_epochs: int | None = None, weight_decay: float | None = None, training_crop_size: int | None = None, validation_crop_size: int | None = None, validation_resize_size: int | None = None, weighted_loss: int | None = None, **kwargs: Any)
		Parameters
| Name | Description | 
|---|---|
| 
		 advanced_settings 
			
				Required
			 
	 | 
	
		
		 Settings for advanced scenarios.  | 
| 
		 ams_gradient 
			
				Required
			 
	 | 
	
		
		 Enable AMSGrad when optimizer is 'adam' or 'adamw'.  | 
| 
		 beta1 
			
				Required
			 
	 | 
	
		
		 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].  | 
| 
		 beta2 
			
				Required
			 
	 | 
	
		
		 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].  | 
| 
		 checkpoint_frequency 
			
				Required
			 
	 | 
	
		
		 Frequency to store model checkpoints. Must be a positive integer.  | 
| 
		 checkpoint_run_id 
			
				Required
			 
	 | 
	
		
		 The id of a previous run that has a pretrained checkpoint for incremental training.  | 
| 
		 distributed 
			
				Required
			 
	 | 
	
		
		 Whether to use distributed training.  | 
| 
		 early_stopping 
			
				Required
			 
	 | 
	
		
		 Enable early stopping logic during training.  | 
| 
		 early_stopping_delay 
			
				Required
			 
	 | 
	
		
		 Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer.  | 
| 
		 early_stopping_patience 
			
				Required
			 
	 | 
	
		
		 Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer.  | 
| 
		 enable_onnx_normalization 
			
				Required
			 
	 | 
	
		
		 Enable normalization when exporting ONNX model.  | 
| 
		 evaluation_frequency 
			
				Required
			 
	 | 
	
		
		 Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.  | 
| 
		 gradient_accumulation_step 
			
				Required
			 
	 | 
	
		
		 Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer.  | 
| 
		 layers_to_freeze 
			
				Required
			 
	 | 
	
		
		 Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://free.blessedness.top/azure/machine-learning/how-to-auto-train-image-models.  | 
| 
		 learning_rate 
			
				Required
			 
	 | 
	
		
		 Initial learning rate. Must be a float in the range [0, 1].  | 
| 
		 learning_rate_scheduler 
			
				Required
			 
	 | 
	
		
		 Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. Possible values include: "None", "WarmupCosine", "Step".  | 
| 
		 model_name 
			
				Required
			 
	 | 
	
		
		 Name of the model to use for training. For more information on the available models please visit the official documentation: https://free.blessedness.top/azure/machine-learning/how-to-auto-train-image-models.  | 
| 
		 momentum 
			
				Required
			 
	 | 
	
		
		 Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].  | 
| 
		 nesterov 
			
				Required
			 
	 | 
	
		
		 Enable nesterov when optimizer is 'sgd'.  | 
| 
		 number_of_epochs 
			
				Required
			 
	 | 
	
		
		 Number of training epochs. Must be a positive integer.  | 
| 
		 number_of_workers 
			
				Required
			 
	 | 
	
		
		 Number of data loader workers. Must be a non-negative integer.  | 
| 
		 optimizer 
			
				Required
			 
	 | 
	
		
		 Type of optimizer. Possible values include: "None", "Sgd", "Adam", "Adamw".  | 
| 
		 random_seed 
			
				Required
			 
	 | 
	
		
		 Random seed to be used when using deterministic training.  | 
| 
		 step_lr_gamma 
			
				Required
			 
	 | 
	
		
		 Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].  | 
| 
		 step_lr_step_size 
			
				Required
			 
	 | 
	
		
		 Value of step size when learning rate scheduler is 'step'. Must be a positive integer.  | 
| 
		 training_batch_size 
			
				Required
			 
	 | 
	
		
		 Training batch size. Must be a positive integer.  | 
| 
		 validation_batch_size 
			
				Required
			 
	 | 
	
		
		 Validation batch size. Must be a positive integer.  | 
| 
		 warmup_cosine_lr_cycles 
			
				Required
			 
	 | 
	
		
		 Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].  | 
| 
		 warmup_cosine_lr_warmup_epochs 
			
				Required
			 
	 | 
	
		
		 Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.  | 
| 
		 weight_decay 
			
				Required
			 
	 | 
	
		
		 Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].  | 
| 
		 training_crop_size 
			
				Required
			 
	 | 
	
		
		 Image crop size that is input to the neural network for the training dataset. Must be a positive integer.  | 
| 
		 validation_crop_size 
			
				Required
			 
	 | 
	
		
		 Image crop size that is input to the neural network for the validation dataset. Must be a positive integer.  | 
| 
		 validation_resize_size 
			
				Required
			 
	 | 
	
		
		 Image size to which to resize before cropping for validation dataset. Must be a positive integer.  | 
| 
		 weighted_loss 
			
				Required
			 
	 | 
	
		
		 Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.  | 
Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 advanced_settings 
	 | 
	
		 Default value: None 
			 | 
| 
		 ams_gradient 
	 | 
	
		 Default value: None 
			 | 
| 
		 beta1 
	 | 
	
		 Default value: None 
			 | 
| 
		 beta2 
	 | 
	
		 Default value: None 
			 | 
| 
		 checkpoint_frequency 
	 | 
	
		 Default value: None 
			 | 
| 
		 checkpoint_run_id 
	 | 
	
		 Default value: None 
			 | 
| 
		 distributed 
	 | 
	
		 Default value: None 
			 | 
| 
		 early_stopping 
	 | 
	
		 Default value: None 
			 | 
| 
		 early_stopping_delay 
	 | 
	
		 Default value: None 
			 | 
| 
		 early_stopping_patience 
	 | 
	
		 Default value: None 
			 | 
| 
		 enable_onnx_normalization 
	 | 
	
		 Default value: None 
			 | 
| 
		 evaluation_frequency 
	 | 
	
		 Default value: None 
			 | 
| 
		 gradient_accumulation_step 
	 | 
	
		 Default value: None 
			 | 
| 
		 layers_to_freeze 
	 | 
	
		 Default value: None 
			 | 
| 
		 learning_rate 
	 | 
	
		 Default value: None 
			 | 
| 
		 learning_rate_scheduler 
	 | 
	
		 Default value: None 
			 | 
| 
		 model_name 
	 | 
	
		 Default value: None 
			 | 
| 
		 momentum 
	 | 
	
		 Default value: None 
			 | 
| 
		 nesterov 
	 | 
	
		 Default value: None 
			 | 
| 
		 number_of_epochs 
	 | 
	
		 Default value: None 
			 | 
| 
		 number_of_workers 
	 | 
	
		 Default value: None 
			 | 
| 
		 optimizer 
	 | 
	
		 Default value: None 
			 | 
| 
		 random_seed 
	 | 
	
		 Default value: None 
			 | 
| 
		 step_lr_gamma 
	 | 
	
		 Default value: None 
			 | 
| 
		 step_lr_step_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 training_batch_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 validation_batch_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 warmup_cosine_lr_cycles 
	 | 
	
		 Default value: None 
			 | 
| 
		 warmup_cosine_lr_warmup_epochs 
	 | 
	
		 Default value: None 
			 | 
| 
		 weight_decay 
	 | 
	
		 Default value: None 
			 | 
| 
		 training_crop_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 validation_crop_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 validation_resize_size 
	 | 
	
		 Default value: None 
			 | 
| 
		 weighted_loss 
	 | 
	
		 Default value: None 
			 | 
Examples
Defining the automl image classification model settings.
   from azure.ai.ml import automl
   image_classification_model_settings = automl.ImageModelSettingsClassification(
       checkpoint_frequency=5,
       early_stopping=False,
       gradient_accumulation_step=2,
   )