Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
The lock keyword marks a statement block as a critical section by obtaining the mutual-exclusion lock for a given object, executing a statement, and then releasing the lock. This statement takes the following form:
Object thisLock = new Object();
lock (thisLock)
{
// Critical code section.
}
For more information, see Thread Synchronization (C# Programming Guide).
Remarks
The lock keyword ensures that one thread does not enter a critical section of code while another thread is in the critical section. If another thread tries to enter a locked code, it will wait, block, until the object is released.
The section Threading (C# Programming Guide) discusses threading.
The lock keyword calls Enter at the start of the block and Exit at the end of the block.
In general, avoid locking on a public type, or instances beyond your code's control. The common constructs lock (this), lock (typeof (MyType)), and lock ("myLock") violate this guideline:
lock (this) is a problem if the instance can be accessed publicly.
lock (typeof (MyType)) is a problem if MyType is publicly accessible.
lock("myLock") is a problem because any other code in the process using the same string, will share the same lock.
Best practice is to define a private object to lock on, or a private static object variable to protect data common to all instances.
Example
The following sample shows a simple use of threads without locking in C#.
//using System.Threading;
class ThreadTest
{
public void RunMe()
{
Console.WriteLine("RunMe called");
}
static void Main()
{
ThreadTest b = new ThreadTest();
Thread t = new Thread(b.RunMe);
t.Start();
}
}
// Output: RunMe called
The following sample uses threads and lock. As long as the lock statement is present, the statement block is a critical section and balance will never become a negative number.
// using System.Threading;
class Account
{
private Object thisLock = new Object();
int balance;
Random r = new Random();
public Account(int initial)
{
balance = initial;
}
int Withdraw(int amount)
{
// This condition will never be true unless the lock statement
// is commented out:
if (balance < 0)
{
throw new Exception("Negative Balance");
}
// Comment out the next line to see the effect of leaving out
// the lock keyword:
lock (thisLock)
{
if (balance >= amount)
{
Console.WriteLine("Balance before Withdrawal : " + balance);
Console.WriteLine("Amount to Withdraw : -" + amount);
balance = balance - amount;
Console.WriteLine("Balance after Withdrawal : " + balance);
return amount;
}
else
{
return 0; // transaction rejected
}
}
}
public void DoTransactions()
{
for (int i = 0; i < 100; i+)
{
Withdraw(r.Next(1, 100));
}
}
}
class Test
{
static void Main()
{
Thread[] threads = new Thread[10];
Account acc = new Account(1000);
for (int i = 0; i < 10; i+)
{
Thread t = new Thread(new ThreadStart(acc.DoTransactions));
threads[i] = t;
}
for (int i = 0; i < 10; i+)
{
threads[i].Start();
}
}
}
C# Language Specification
For more information, see the following sections in the C# Language Specification:
5.3.3.18 Lock statements
8.12 The lock statement
See Also
Tasks
Monitor Synchronization Technology Sample
Wait Synchronization Technology Sample
Concepts
Reference
Threading (C# Programming Guide)
Statement Keywords (C# Reference)
Thread Synchronization (C# Programming Guide)