Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Usage
revoscalepy.rx_predict(model_object=None, data=None, output_data=None, **kwargs)
Description
Generic function to compute predicted values and residuals using rx_lin_mod, rx_logit, rx_dtree, rx_dforest and rx_btrees objects.
Arguments
model_object
object returned from a call to rx_lin_mod, rx_logit, rx_dtree, rx_dforest and rx_btrees. Objects with multiple dependent variables are not supported.
data
a data frame or an RxXdfData data source object to be used for predictions. If a Spark compute context is being used, this argument may also be an RxHiveData, RxOrcData, RxParquetData or RxSparkDataFrame object or a Spark data frame object from pyspark.sql.DataFrame.
output_data
an RxXdfData data source object or existing data frame to store predictions.
kwargs
additional parameters
Returns
a data frame or a data source object of prediction results.
See also
rx_predict_default,
rx_predict_rx_dtree,
rx_predict_rx_dforest.
Example
import os
from revoscalepy import RxOptions, RxXdfData, rx_lin_mod, rx_predict, rx_data_step
sample_data_path = RxOptions.get_option("sampleDataDir")
mort_ds = RxXdfData(os.path.join(sample_data_path, "mortDefaultSmall.xdf"))
mort_df = rx_data_step(mort_ds)
lin_mod = rx_lin_mod("creditScore ~ yearsEmploy", mort_df)
pred = rx_predict(lin_mod, data = mort_df)
print(pred.head())
Output:
Rows Read: 100000, Total Rows Processed: 100000, Total Chunk Time: 0.058 seconds
Rows Read: 100000, Total Rows Processed: 100000, Total Chunk Time: 0.006 seconds
Computation time: 0.039 seconds.
Rows Read: 100000, Total Rows Processed: 100000, Total Chunk Time: Less than .001 seconds
creditScore_Pred
0 700.089114
1 699.834355
2 699.783403
3 699.681499
4 699.783403
Note: Function rx_predict does not run predictions but chooses the appropriate function rx_predict_default, rx_predict_rx_dtree, or rx_predict_rx_dforest based on the model which was given to it. Each of them has a different set of parameters described by their documentation.