Dela via


Genomgång: Skapa ett Image-Processing nätverk

Det här dokumentet visar hur du skapar ett nätverk med asynkrona meddelandeblock som utför bildbearbetning.

Nätverket avgör vilka åtgärder som ska utföras på en avbildning utifrån dess egenskaper. I det här exemplet används dataflödesmodellen för att dirigera avbildningar via nätverket. I dataflödesmodellen kommunicerar oberoende komponenter i ett program med varandra genom att skicka meddelanden. När en komponent tar emot ett meddelande kan den utföra en åtgärd och sedan skicka resultatet av åtgärden till en annan komponent. Jämför detta med kontrollflödesmodellen , där ett program använder kontrollstrukturer, till exempel villkorssatser, loopar och så vidare, för att styra ordningen på åtgärder i ett program.

Ett nätverk som baseras på dataflöde skapar en pipeline med uppgifter. Varje steg i pipelinen utför samtidigt en del av den övergripande uppgiften. En analogi till detta är en monteringslinje för biltillverkning. När varje fordon passerar genom monteringslinjen monterar en station ramen, en annan installerar motorn och så vidare. Genom att göra det möjligt att montera flera fordon samtidigt ger monteringslinjen bättre dataflöde än att montera kompletta fordon en i taget.

Förutsättningar

Läs följande dokument innan du påbörjar den här genomgången:

Vi rekommenderar också att du förstår grunderna i GDI+ innan du påbörjar den här genomgången.

Sektioner

Den här genomgången innehåller följande avsnitt:

Definiera bildbearbetningsfunktioner

Det här avsnittet visar de supportfunktioner som nätverket för bildbearbetning använder för att arbeta med avbildningar som läss från disk.

Följande funktioner, GetRGB och MakeColor, extraherar och kombinerar de enskilda komponenterna i den angivna färgen.

// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
   r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
   g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
   b = static_cast<BYTE>((color & 0x000000ff));
}

// Creates a single color value from the provided red, green, 
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
   return (r<<16) | (g<<8) | (b);
}

Följande funktion, ProcessImage, anropar det angivna std::function-objektet för att transformera färgvärdet för varje pixel i ett GDI+ Bitmap-objekt . Funktionen ProcessImage använder algoritmen concurrency::parallel_for för att bearbeta varje rad i bitmappen parallellt.

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
   int width = bmp->GetWidth();
   int height = bmp->GetHeight();

   // Lock the bitmap.
   BitmapData bitmapData;
   Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
   bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

   // Get a pointer to the bitmap data.
   DWORD* image_bits = (DWORD*)bitmapData.Scan0;

   // Call the function for each pixel in the image.
   parallel_for (0, height, [&, width](int y)
   {      
      for (int x = 0; x < width; ++x)
      {
         // Get the current pixel value.
         DWORD* curr_pixel = image_bits + (y * width) + x;

         // Call the function.
         f(*curr_pixel);
      }
   });

   // Unlock the bitmap.
   bmp->UnlockBits(&bitmapData);
}

Följande funktioner, Grayscale, Sepiatone, ColorMask, och Darken, anropar funktionen ProcessImage för att transformera färgvärdet för varje pixel i ett Bitmap-objekt. Var och en av dessa funktioner använder ett lambda-uttryck för att definiera färgtransformeringen av en pixel.

// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp) 
{
   ProcessImage(bmp, 
      [](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);

         // Set each color component to the average of 
         // the original components.
         BYTE c = (static_cast<WORD>(r) + g + b) / 3;
         color = MakeColor(c, c, c);
      }
   );
   return bmp;
}

// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp) 
{
   ProcessImage(bmp, 
      [](DWORD& color) {
         BYTE r0, g0, b0;
         GetRGB(color, r0, g0, b0);

         WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
         WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
         WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));

         color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
      }
   );
   return bmp;
}

// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
   ProcessImage(bmp, 
      [mask](DWORD& color) {
         color = color & mask;
      }
   );
   return bmp;
}

// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
   if (percent > 100)
      throw invalid_argument("Darken: percent must less than 100.");

   double factor = percent / 100.0;

   ProcessImage(bmp, 
      [factor](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);
         r = static_cast<BYTE>(factor*r);
         g = static_cast<BYTE>(factor*g);
         b = static_cast<BYTE>(factor*b);
         color = MakeColor(r, g, b);
      }
   );
   return bmp;
}

Följande funktion, GetColorDominance, anropar också funktionen ProcessImage. Men i stället för att ändra värdet för varje färg använder den här funktionen samtidighet::combinable-objekt för att beräkna om den röda, gröna eller blå färgkomponenten dominerar bilden.

// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
   // The ProcessImage function processes the image in parallel.
   // The following combinable objects enable the callback function
   // to increment the color counts without using a lock.
   combinable<unsigned int> reds;
   combinable<unsigned int> greens;
   combinable<unsigned int> blues;

   ProcessImage(bmp, 
      [&](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);
         if (r >= g && r >= b)
            reds.local()++;
         else if (g >= r && g >= b)
            greens.local()++;
         else
            blues.local()++;
      }
   );
   
   // Determine which color is dominant and return the corresponding
   // color mask.

   unsigned int r = reds.combine(plus<unsigned int>());
   unsigned int g = greens.combine(plus<unsigned int>());
   unsigned int b = blues.combine(plus<unsigned int>());

   if (r + r >= g + b)
      return 0x00ff0000;
   else if (g + g >= r + b)
      return 0x0000ff00;
   else
      return 0x000000ff;
}

Följande funktion, GetEncoderClsid, hämtar klassidentifieraren för den angivna MIME-typen för en kodare. Programmet använder den här funktionen för att hämta kodaren för en bitmapp.

// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
   UINT  num = 0;          // number of image encoders
   UINT  size = 0;         // size of the image encoder array in bytes

   ImageCodecInfo* pImageCodecInfo = nullptr;

   GetImageEncodersSize(&num, &size);
   if(size == 0)
      return -1;  // Failure

   pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
   if(pImageCodecInfo == nullptr)
      return -1;  // Failure

   GetImageEncoders(num, size, pImageCodecInfo);

   for(UINT j = 0; j < num; ++j)
   {
      if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
      {
         *pClsid = pImageCodecInfo[j].Clsid;
         free(pImageCodecInfo);
         return j;  // Success
      }    
   }

   free(pImageCodecInfo);
   return -1;  // Failure
}

[Topp]

Skapa avbildningsbearbetningsnätverket

I det här avsnittet beskrivs hur du skapar ett nätverk med asynkrona meddelandeblock som utför bildbearbetning på varje JPEG-bild (.jpg) i en viss katalog. Nätverket utför följande bildbearbetningsåtgärder:

  1. Konvertera till gråskala för alla bilder som har skapats av Tom.

  2. För alla bilder som har rött som den dominerande färgen tar du bort de gröna och blå komponenterna och mörknar sedan den.

  3. Använd sepia-toning för andra avbildningar.

Nätverket tillämpar endast den första avbildningsbearbetningsåtgärden som matchar något av dessa villkor. Om en bild till exempel har skapats av Tom och har rött som sin dominerande färg konverteras bilden bara till gråskala.

När nätverket har slutfört varje bildbearbetningsåtgärd sparas avbildningen på disken som en bitmappsfil (.bmp).

Följande steg visar hur du skapar en funktion som implementerar det här avbildningsbearbetningsnätverket och tillämpar nätverket på varje JPEG-avbildning i en viss katalog.

Så här skapar du avbildningsbearbetningsnätverket

  1. Skapa en funktion, ProcessImages, som tar namnet på en katalog på disken.

    void ProcessImages(const wstring& directory)
    {
    }
    
  2. Skapa en ProcessImages variabel i countdown_event funktionen. Klassen countdown_event visas senare i den här genomgången.

    // Holds the number of active image processing operations and 
    // signals to the main thread that processing is complete.
    countdown_event active(0);
    
  3. Skapa ett std::map-objekt som associerar ett Bitmap objekt med dess ursprungliga filnamn.

    // Maps Bitmap objects to their original file names.
    map<Bitmap*, wstring> bitmap_file_names;
    
  4. Lägg till följande kod för att definiera medlemmarna i avbildningsbearbetningsnätverket.

     //
     // Create the nodes of the network.
     //
    
     // Loads Bitmap objects from disk.
     transformer<wstring, Bitmap*> load_bitmap(
        [&](wstring file_name) -> Bitmap* {
           Bitmap* bmp = new Bitmap(file_name.c_str());
           if (bmp != nullptr)
              bitmap_file_names.insert(make_pair(bmp, file_name));
           return bmp;
        }
     );
    
     // Holds loaded Bitmap objects.
     unbounded_buffer<Bitmap*> loaded_bitmaps;
    
     // Converts images that are authored by Tom to grayscale.
     transformer<Bitmap*, Bitmap*> grayscale(
        [](Bitmap* bmp) {
           return Grayscale(bmp);
        },
        nullptr,
        [](Bitmap* bmp) -> bool {
           if (bmp == nullptr)
              return false;
    
           // Retrieve the artist name from metadata.
           UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
           if (size == 0)
              // Image does not have the Artist property.
              return false;
    
           PropertyItem* artistProperty = (PropertyItem*) malloc(size);
           bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);
           string artist(reinterpret_cast<char*>(artistProperty->value));
           free(artistProperty);
           
           return (artist.find("Tom ") == 0);
        }
     );
     
     // Removes the green and blue color components from images that have red as
     // their dominant color.
     transformer<Bitmap*, Bitmap*> colormask(
        [](Bitmap* bmp) {
           return ColorMask(bmp, 0x00ff0000);
        },
        nullptr,
        [](Bitmap* bmp) -> bool { 
           if (bmp == nullptr)
              return false;
           return (GetColorDominance(bmp) == 0x00ff0000);
        }
     );
    
     // Darkens the color of the provided Bitmap object.
     transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
        return Darken(bmp, 50);
     });
    
     // Applies sepia toning to the remaining images.
     transformer<Bitmap*, Bitmap*> sepiatone(
        [](Bitmap* bmp) {
           return Sepiatone(bmp);
        },
        nullptr,
        [](Bitmap* bmp) -> bool { return bmp != nullptr; }
     );
    
     // Saves Bitmap objects to disk.
     transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
        // Replace the file extension with .bmp.
        wstring file_name = bitmap_file_names[bmp];
        file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");
        
        // Save the processed image.
        CLSID bmpClsid;
        GetEncoderClsid(L"image/bmp", &bmpClsid);      
        bmp->Save(file_name.c_str(), &bmpClsid);
    
        return bmp;
     });
    
     // Deletes Bitmap objects.
     transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {      
        delete bmp;
        return nullptr;
     });
    
     // Decrements the event counter.
     call<Bitmap*> decrement([&](Bitmap* _) {      
        active.signal();
     });
    
  5. Lägg till följande kod för att ansluta nätverket.

    //
    // Connect the network.
    //   
    
    load_bitmap.link_target(&loaded_bitmaps);
    
    loaded_bitmaps.link_target(&grayscale);
    loaded_bitmaps.link_target(&colormask);   
    colormask.link_target(&darken);
    loaded_bitmaps.link_target(&sepiatone);
    loaded_bitmaps.link_target(&decrement);
    
    grayscale.link_target(&save_bitmap);
    darken.link_target(&save_bitmap);
    sepiatone.link_target(&save_bitmap);
    
    save_bitmap.link_target(&delete_bitmap);
    delete_bitmap.link_target(&decrement);
    
  6. Lägg till följande kod för att skicka den fullständiga sökvägen till varje JPEG-fil i katalogen till nätverkets huvud.

    // Traverse all files in the directory.
    wstring searchPattern = directory;
    searchPattern.append(L"\\*");
    
    WIN32_FIND_DATA fileFindData;
    HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
    if (hFind == INVALID_HANDLE_VALUE) 
       return;
    do
    {
       if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
       {
          wstring file = fileFindData.cFileName;
    
          // Process only JPEG files.
          if (file.rfind(L".jpg") == file.length() - 4)
          {
             // Form the full path to the file.
             wstring full_path(directory);
             full_path.append(L"\\");
             full_path.append(file);
    
             // Increment the count of work items.
             active.add_count();
    
             // Send the path name to the network.
             send(load_bitmap, full_path);
          }
       }
    }
    while (FindNextFile(hFind, &fileFindData) != 0); 
    FindClose(hFind);
    
  7. Vänta tills variabeln countdown_event når noll.

    // Wait for all operations to finish.
    active.wait();
    

I följande tabell beskrivs medlemmarna i nätverket.

Medlem Beskrivning
load_bitmap Ett samtidighetsobjekt::transformeringsobjekt som läser in ett Bitmap-objekt från disk och lägger till en post i map-objektet för att associera bilden med dess ursprungliga filnamn.
loaded_bitmaps En samtidighet::unbounded_buffer objekt som skickar de inlästa bilderna till bildbearbetningsfiltren.
grayscale Ett transformer objekt som konverterar bilder som har skapats av Tom till gråskala. Den använder metadata för bilden för att fastställa dess författare.
colormask Ett transformer objekt som tar bort de gröna och blå färgkomponenterna från bilder som har rött som den dominerande färgen.
darken Ett transformer objekt som mörkar bilder som har rött som den dominerande färgen.
sepiatone Ett transformer objekt som tillämpar sepia-toning på bilder som inte har skapats av Tom och som inte är övervägande röda.
save_bitmap Ett transformer objekt som sparar den bearbetade image till disken som en bitmapp. save_bitmap hämtar det ursprungliga filnamnet från map objektet och ändrar filnamnstillägget till .bmp.
delete_bitmap Ett transformer objekt som frigör minnet för bilderna.
decrement Ett samtidighet::anropa-objekt som fungerar som den sista noden i nätverket. Det minskar countdown_event objektet för att signalera till huvudprogrammet att en bild har bearbetats.

Meddelandebufferten loaded_bitmaps är viktig eftersom den som ett unbounded_buffer objekt erbjuder Bitmap objekt till flera mottagare. När ett målblock accepterar ett Bitmap-objekt, erbjuder unbounded_buffer-objektet inte Bitmap-objektet till några andra mål. Därför är det viktigt i vilken ordning du länkar objekt till ett unbounded_buffer objekt. Meddelandeblocken grayscale, colormask och sepiatone använder ett filter för att endast acceptera vissa Bitmap-objekt. Meddelandebufferten decrement är ett viktigt mål för meddelandebufferten loaded_bitmaps eftersom den accepterar alla Bitmap objekt som avvisas av de andra meddelandebuffertarna. Ett unbounded_buffer objekt krävs för att sprida meddelanden i ordning. Därför blockeras ett unbounded_buffer objekt tills ett nytt målblock är länkat till det och accepterar meddelandet om inget aktuellt målblock accepterar meddelandet.

Om programmet kräver att flera meddelandeblock bearbetar meddelandet kan du i stället för bara det enda meddelandeblock som först accepterar meddelandet använda en annan typ av meddelandeblock, till exempel overwrite_buffer. Klassen overwrite_buffer innehåller ett meddelande i taget, men det sprids till vart och ett av dess mål.

Följande bild visar nätverket för bildbearbetning:

Nätverk för bildbearbetning.

Objektet countdown_event i det här exemplet gör det möjligt för avbildningsbearbetningsnätverket att informera huvudprogrammet när alla bilder har bearbetats. Klassen countdown_event använder ett samtidighetsobjekt::händelseobjekt för att signalera när ett räknarvärde når noll. Huvudprogrammet ökar räknaren varje gång det skickar ett filnamn till nätverket. Terminalnoden i nätverket minskar räknaren när varje avbildning har bearbetats. När huvudprogrammet passerar den angivna katalogen väntar det på att objektet ska signalera att räknaren countdown_event har nått noll.

I följande exempel visas countdown_event klassen:

// A synchronization primitive that is signaled when its 
// count reaches zero.
class countdown_event
{
public:
   countdown_event(unsigned int count = 0)
      : _current(static_cast<long>(count)) 
   {
      // Set the event if the initial count is zero.
      if (_current == 0L)
         _event.set();
   }
     
   // Decrements the event counter.
   void signal() {
      if(InterlockedDecrement(&_current) == 0L) {
         _event.set();
      }
   }

   // Increments the event counter.
   void add_count() {
      if(InterlockedIncrement(&_current) == 1L) {
         _event.reset();
      }
   }
   
   // Blocks the current context until the event is set.
   void wait() {
      _event.wait();
   }
 
private:
   // The current count.
   volatile long _current;
   // The event that is set when the counter reaches zero.
   event _event;

   // Disable copy constructor.
   countdown_event(const countdown_event&);
   // Disable assignment.
   countdown_event const & operator=(countdown_event const&);
};

[Topp]

Det fullständiga exemplet

Följande kod visar det fullständiga exemplet. Funktionen wmain hanterar GDI+-biblioteket och anropar ProcessImages funktionen för att bearbeta JPEG-filerna i Sample Pictures katalogen.

// image-processing-network.cpp
// compile with: /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib
#include <windows.h>
#include <gdiplus.h>
#include <iostream>
#include <map>
#include <agents.h>
#include <ppl.h>

using namespace concurrency;
using namespace Gdiplus;
using namespace std;

// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
   r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
   g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
   b = static_cast<BYTE>((color & 0x000000ff));
}

// Creates a single color value from the provided red, green, 
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
   return (r<<16) | (g<<8) | (b);
}

// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
   int width = bmp->GetWidth();
   int height = bmp->GetHeight();

   // Lock the bitmap.
   BitmapData bitmapData;
   Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
   bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);

   // Get a pointer to the bitmap data.
   DWORD* image_bits = (DWORD*)bitmapData.Scan0;

   // Call the function for each pixel in the image.
   parallel_for (0, height, [&, width](int y)
   {      
      for (int x = 0; x < width; ++x)
      {
         // Get the current pixel value.
         DWORD* curr_pixel = image_bits + (y * width) + x;

         // Call the function.
         f(*curr_pixel);
      }
   });

   // Unlock the bitmap.
   bmp->UnlockBits(&bitmapData);
}

// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp) 
{
   ProcessImage(bmp, 
      [](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);

         // Set each color component to the average of 
         // the original components.
         BYTE c = (static_cast<WORD>(r) + g + b) / 3;
         color = MakeColor(c, c, c);
      }
   );
   return bmp;
}

// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp) 
{
   ProcessImage(bmp, 
      [](DWORD& color) {
         BYTE r0, g0, b0;
         GetRGB(color, r0, g0, b0);

         WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
         WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
         WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));

         color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
      }
   );
   return bmp;
}

// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
   ProcessImage(bmp, 
      [mask](DWORD& color) {
         color = color & mask;
      }
   );
   return bmp;
}

// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
   if (percent > 100)
      throw invalid_argument("Darken: percent must less than 100.");

   double factor = percent / 100.0;

   ProcessImage(bmp, 
      [factor](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);
         r = static_cast<BYTE>(factor*r);
         g = static_cast<BYTE>(factor*g);
         b = static_cast<BYTE>(factor*b);
         color = MakeColor(r, g, b);
      }
   );
   return bmp;
}

// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
   // The ProcessImage function processes the image in parallel.
   // The following combinable objects enable the callback function
   // to increment the color counts without using a lock.
   combinable<unsigned int> reds;
   combinable<unsigned int> greens;
   combinable<unsigned int> blues;

   ProcessImage(bmp, 
      [&](DWORD& color) {
         BYTE r, g, b;
         GetRGB(color, r, g, b);
         if (r >= g && r >= b)
            reds.local()++;
         else if (g >= r && g >= b)
            greens.local()++;
         else
            blues.local()++;
      }
   );
   
   // Determine which color is dominant and return the corresponding
   // color mask.

   unsigned int r = reds.combine(plus<unsigned int>());
   unsigned int g = greens.combine(plus<unsigned int>());
   unsigned int b = blues.combine(plus<unsigned int>());

   if (r + r >= g + b)
      return 0x00ff0000;
   else if (g + g >= r + b)
      return 0x0000ff00;
   else
      return 0x000000ff;
}

// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
   UINT  num = 0;          // number of image encoders
   UINT  size = 0;         // size of the image encoder array in bytes

   ImageCodecInfo* pImageCodecInfo = nullptr;

   GetImageEncodersSize(&num, &size);
   if(size == 0)
      return -1;  // Failure

   pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
   if(pImageCodecInfo == nullptr)
      return -1;  // Failure

   GetImageEncoders(num, size, pImageCodecInfo);

   for(UINT j = 0; j < num; ++j)
   {
      if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
      {
         *pClsid = pImageCodecInfo[j].Clsid;
         free(pImageCodecInfo);
         return j;  // Success
      }    
   }

   free(pImageCodecInfo);
   return -1;  // Failure
}

// A synchronization primitive that is signaled when its 
// count reaches zero.
class countdown_event
{
public:
   countdown_event(unsigned int count = 0)
      : _current(static_cast<long>(count)) 
   {
      // Set the event if the initial count is zero.
      if (_current == 0L)
         _event.set();
   }
     
   // Decrements the event counter.
   void signal() {
      if(InterlockedDecrement(&_current) == 0L) {
         _event.set();
      }
   }

   // Increments the event counter.
   void add_count() {
      if(InterlockedIncrement(&_current) == 1L) {
         _event.reset();
      }
   }
   
   // Blocks the current context until the event is set.
   void wait() {
      _event.wait();
   }
 
private:
   // The current count.
   volatile long _current;
   // The event that is set when the counter reaches zero.
   event _event;

   // Disable copy constructor.
   countdown_event(const countdown_event&);
   // Disable assignment.
   countdown_event const & operator=(countdown_event const&);
};

// Demonstrates how to set up a message network that performs a series of 
// image processing operations on each JPEG image in the given directory and
// saves each altered image as a Windows bitmap.
void ProcessImages(const wstring& directory)
{
   // Holds the number of active image processing operations and 
   // signals to the main thread that processing is complete.
   countdown_event active(0);

   // Maps Bitmap objects to their original file names.
   map<Bitmap*, wstring> bitmap_file_names;
      
   //
   // Create the nodes of the network.
   //

   // Loads Bitmap objects from disk.
   transformer<wstring, Bitmap*> load_bitmap(
      [&](wstring file_name) -> Bitmap* {
         Bitmap* bmp = new Bitmap(file_name.c_str());
         if (bmp != nullptr)
            bitmap_file_names.insert(make_pair(bmp, file_name));
         return bmp;
      }
   );

   // Holds loaded Bitmap objects.
   unbounded_buffer<Bitmap*> loaded_bitmaps;
  
   // Converts images that are authored by Tom to grayscale.
   transformer<Bitmap*, Bitmap*> grayscale(
      [](Bitmap* bmp) {
         return Grayscale(bmp);
      },
      nullptr,
      [](Bitmap* bmp) -> bool {
         if (bmp == nullptr)
            return false;

         // Retrieve the artist name from metadata.
         UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
         if (size == 0)
            // Image does not have the Artist property.
            return false;

         PropertyItem* artistProperty = (PropertyItem*) malloc(size);
         bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);
         string artist(reinterpret_cast<char*>(artistProperty->value));
         free(artistProperty);
         
         return (artist.find("Tom ") == 0);
      }
   );
   
   // Removes the green and blue color components from images that have red as
   // their dominant color.
   transformer<Bitmap*, Bitmap*> colormask(
      [](Bitmap* bmp) {
         return ColorMask(bmp, 0x00ff0000);
      },
      nullptr,
      [](Bitmap* bmp) -> bool { 
         if (bmp == nullptr)
            return false;
         return (GetColorDominance(bmp) == 0x00ff0000);
      }
   );

   // Darkens the color of the provided Bitmap object.
   transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
      return Darken(bmp, 50);
   });

   // Applies sepia toning to the remaining images.
   transformer<Bitmap*, Bitmap*> sepiatone(
      [](Bitmap* bmp) {
         return Sepiatone(bmp);
      },
      nullptr,
      [](Bitmap* bmp) -> bool { return bmp != nullptr; }
   );

   // Saves Bitmap objects to disk.
   transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
      // Replace the file extension with .bmp.
      wstring file_name = bitmap_file_names[bmp];
      file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");
      
      // Save the processed image.
      CLSID bmpClsid;
      GetEncoderClsid(L"image/bmp", &bmpClsid);      
      bmp->Save(file_name.c_str(), &bmpClsid);

      return bmp;
   });

   // Deletes Bitmap objects.
   transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {      
      delete bmp;
      return nullptr;
   });

   // Decrements the event counter.
   call<Bitmap*> decrement([&](Bitmap* _) {      
      active.signal();
   });

   //
   // Connect the network.
   //   
   
   load_bitmap.link_target(&loaded_bitmaps);
   
   loaded_bitmaps.link_target(&grayscale);
   loaded_bitmaps.link_target(&colormask);   
   colormask.link_target(&darken);
   loaded_bitmaps.link_target(&sepiatone);
   loaded_bitmaps.link_target(&decrement);
   
   grayscale.link_target(&save_bitmap);
   darken.link_target(&save_bitmap);
   sepiatone.link_target(&save_bitmap);
   
   save_bitmap.link_target(&delete_bitmap);
   delete_bitmap.link_target(&decrement);
   
   // Traverse all files in the directory.
   wstring searchPattern = directory;
   searchPattern.append(L"\\*");

   WIN32_FIND_DATA fileFindData;
   HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
   if (hFind == INVALID_HANDLE_VALUE) 
      return;
   do
   {
      if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
      {
         wstring file = fileFindData.cFileName;

         // Process only JPEG files.
         if (file.rfind(L".jpg") == file.length() - 4)
         {
            // Form the full path to the file.
            wstring full_path(directory);
            full_path.append(L"\\");
            full_path.append(file);

            // Increment the count of work items.
            active.add_count();

            // Send the path name to the network.
            send(load_bitmap, full_path);
         }
      }
   }
   while (FindNextFile(hFind, &fileFindData) != 0); 
   FindClose(hFind);
      
   // Wait for all operations to finish.
   active.wait();
}

int wmain()
{
   GdiplusStartupInput gdiplusStartupInput;
   ULONG_PTR           gdiplusToken;

   // Initialize GDI+.
   GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);

   // Perform image processing.
   // TODO: Change this path if necessary.
   ProcessImages(L"C:\\Users\\Public\\Pictures\\Sample Pictures");

   // Shutdown GDI+.
   GdiplusShutdown(gdiplusToken);
}

Följande bild visar exempelutdata. Varje källbild ligger ovanför motsvarande ändrade bild.

Exempelutdata för exemplet.

Lighthouse är författad av Tom Alphin och konverteras därför till gråskala. Chrysanthemum, Desert, Koala, och Tulips har rött som den dominerande färgen och därför har de blå och gröna färgkomponenterna borttagna och mörkas. Hydrangeas, Jellyfishoch Penguins matchar standardvillkoren och är därför sepia tonade.

[Topp]

Kompilera koden

Kopiera exempelkoden och klistra in den i ett Visual Studio-projekt, eller klistra in den i en fil med namnet image-processing-network.cpp och kör sedan följande kommando i ett Visual Studio-kommandotolkfönster.

cl.exe /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib

Se även

Genomgång av samtidighetskörning