Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Det här avsnittet visar hur du använder parallella containrar för att effektivt lagra och komma åt data parallellt.
Exempelkoden beräknar uppsättningen primtal och Carmichael-tal parallellt. För varje Carmichael-nummer beräknar koden sedan de främsta faktorerna för det talet.
Exempel: Avgöra om ett indatavärde är ett primärt tal
I följande exempel visas is_prime funktionen som avgör om ett indatavärde är ett primärt tal och is_carmichael funktionen som avgör om indatavärdet är ett Carmichael-tal.
// Determines whether the input value is prime.
bool is_prime(int n)
{
if (n < 2)
return false;
for (int i = 2; i < n; ++i)
{
if ((n % i) == 0)
return false;
}
return true;
}
// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n)
{
if (n < 2)
return false;
int k = n;
for (int i = 2; i <= k / i; ++i)
{
if (k % i == 0)
{
if ((k / i) % i == 0)
return false;
if ((n - 1) % (i - 1) != 0)
return false;
k /= i;
i = 1;
}
}
return k != n && (n - 1) % (k - 1) == 0;
}
Exempel: Beräkna primtal och Carmichael-tal
I följande exempel används is_prime funktionerna och is_carmichael för att beräkna uppsättningarna med primtal och Carmichael-tal. Exemplet använder concurrency::parallel_invoke och concurrency::parallel_for-algoritmer för att beräkna varje uppsättning parallellt. Mer information om parallella algoritmer finns i Parallella algoritmer.
I det här exemplet används ett samtidighetsobjekt::concurrent_queue för att lagra uppsättningen Carmichael-nummer eftersom det senare kommer att använda objektet som en arbetskö. Det använder ett samtidighet::concurrent_vector-objekt för att lagra uppsättningen primtal eftersom det senare itererar genom uppsättningen för att hitta primtalsfaktorer.
// The maximum number to test.
const int max = 10000000;
// Holds the Carmichael numbers that are in the range [0, max).
concurrent_queue<int> carmichaels;
// Holds the prime numbers that are in the range [0, sqrt(max)).
concurrent_vector<int> primes;
// Generate the set of Carmichael numbers and the set of prime numbers
// in parallel.
parallel_invoke(
[&] {
parallel_for(0, max, [&](int i) {
if (is_carmichael(i)) {
carmichaels.push(i);
}
});
},
[&] {
parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
if (is_prime(i)) {
primes.push_back(i);
}
});
});
Exempel: Hitta alla primtalsfaktorer för ett visst värde
I följande exempel visas funktionen prime_factors_of , som använder utvärderingsdivisionen för att hitta alla huvudfaktorer för det angivna värdet.
Den här funktionen använder algoritmen concurrency::parallel_for_each för att iterera genom primtalssamlingen. Objektet concurrent_vector gör det möjligt för den parallella loopen att samtidigt lägga till primära faktorer i resultatet.
// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n,
const concurrent_vector<int>& primes)
{
// Holds the prime factors of n.
concurrent_vector<int> prime_factors;
// Use trial division to find the prime factors of n.
// Every prime number that divides evenly into n is a prime factor of n.
const int max = sqrt(static_cast<double>(n));
parallel_for_each(begin(primes), end(primes), [&](int prime)
{
if (prime <= max)
{
if ((n % prime) == 0)
prime_factors.push_back(prime);
}
});
return prime_factors;
}
Exempel: Bearbetar varje element i kön med Carmichael-nummer
I det här exemplet bearbetas varje element i kön med Carmichael-nummer genom att anropa prime_factors_of funktionen för att beräkna dess främsta faktorer. Den använder en aktivitetsgrupp för att utföra det här arbetet parallellt. Mer information om aktivitetsgrupper finns i Aktivitetsparallellitet.
I det här exemplet skrivs de främsta faktorerna ut för varje Carmichael-tal om det talet har fler än fyra primära faktorer.
// Use a task group to compute the prime factors of each
// Carmichael number in parallel.
task_group tasks;
int carmichael;
while (carmichaels.try_pop(carmichael))
{
tasks.run([carmichael,&primes]
{
// Compute the prime factors.
auto prime_factors = prime_factors_of(carmichael, primes);
// For brevity, print the prime factors for the current number only
// if there are more than 4.
if (prime_factors.size() > 4)
{
// Sort and then print the prime factors.
sort(begin(prime_factors), end(prime_factors));
wstringstream ss;
ss << L"Prime factors of " << carmichael << L" are:";
for_each (begin(prime_factors), end(prime_factors),
[&](int prime_factor) { ss << L' ' << prime_factor; });
ss << L'.' << endl;
wcout << ss.str();
}
});
}
// Wait for the task group to finish.
tasks.wait();
Exempel: Färdigt exempel på parallell containerkod
Följande kod visar det fullständiga exemplet, som använder parallella containrar för att beräkna de främsta faktorerna i Carmichael-talen.
// carmichael-primes.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_queue.h>
#include <concurrent_vector.h>
#include <iostream>
#include <sstream>
using namespace concurrency;
using namespace std;
// Determines whether the input value is prime.
bool is_prime(int n)
{
if (n < 2)
return false;
for (int i = 2; i < n; ++i)
{
if ((n % i) == 0)
return false;
}
return true;
}
// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n)
{
if (n < 2)
return false;
int k = n;
for (int i = 2; i <= k / i; ++i)
{
if (k % i == 0)
{
if ((k / i) % i == 0)
return false;
if ((n - 1) % (i - 1) != 0)
return false;
k /= i;
i = 1;
}
}
return k != n && (n - 1) % (k - 1) == 0;
}
// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n,
const concurrent_vector<int>& primes)
{
// Holds the prime factors of n.
concurrent_vector<int> prime_factors;
// Use trial division to find the prime factors of n.
// Every prime number that divides evenly into n is a prime factor of n.
const int max = sqrt(static_cast<double>(n));
parallel_for_each(begin(primes), end(primes), [&](int prime)
{
if (prime <= max)
{
if ((n % prime) == 0)
prime_factors.push_back(prime);
}
});
return prime_factors;
}
int wmain()
{
// The maximum number to test.
const int max = 10000000;
// Holds the Carmichael numbers that are in the range [0, max).
concurrent_queue<int> carmichaels;
// Holds the prime numbers that are in the range [0, sqrt(max)).
concurrent_vector<int> primes;
// Generate the set of Carmichael numbers and the set of prime numbers
// in parallel.
parallel_invoke(
[&] {
parallel_for(0, max, [&](int i) {
if (is_carmichael(i)) {
carmichaels.push(i);
}
});
},
[&] {
parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
if (is_prime(i)) {
primes.push_back(i);
}
});
});
// Use a task group to compute the prime factors of each
// Carmichael number in parallel.
task_group tasks;
int carmichael;
while (carmichaels.try_pop(carmichael))
{
tasks.run([carmichael,&primes]
{
// Compute the prime factors.
auto prime_factors = prime_factors_of(carmichael, primes);
// For brevity, print the prime factors for the current number only
// if there are more than 4.
if (prime_factors.size() > 4)
{
// Sort and then print the prime factors.
sort(begin(prime_factors), end(prime_factors));
wstringstream ss;
ss << L"Prime factors of " << carmichael << L" are:";
for_each (begin(prime_factors), end(prime_factors),
[&](int prime_factor) { ss << L' ' << prime_factor; });
ss << L'.' << endl;
wcout << ss.str();
}
});
}
// Wait for the task group to finish.
tasks.wait();
}
Det här exemplet genererar följande exempelutdata.
Prime factors of 9890881 are: 7 11 13 41 241.
Prime factors of 825265 are: 5 7 17 19 73.
Prime factors of 1050985 are: 5 13 19 23 37.
Kompilera koden
Kopiera exempelkoden och klistra in den i ett Visual Studio-projekt, eller klistra in den i en fil med namnet carmichael-primes.cpp och kör sedan följande kommando i ett Visual Studio-kommandotolkfönster.
cl.exe /EHsc carmichael-primes.cpp
Se även
parallella containrar och objekt
Uppgiftsparallellitet
Concurrent_vector-Klass
concurrent_queue-klass
parallel_invoke funktion
parallel_for funktion
task_group-klass