Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Gäller för:
Databricks SQL
Databricks Runtime 12.2 LTS och senare.
Transformerar raderna i föregående table_reference genom att rotera grupper av kolumner till rader och komprimera de listade kolumnerna: En första ny kolumn innehåller de ursprungliga kolumngruppsnamnen (eller aliaset där) som värden, den här kolumnen följs för en grupp kolumner med värdena för varje kolumngrupp.
Syntax
UNPIVOT [ { INCLUDE NULLS | EXCLUDE NULLS } ]
{ single_value | multi_value }
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
[ table_alias ]
single_value
( value_column
FOR unpivot_column IN ( { column_name [ column_alias ] } [, ...] ) )
multi_value
( ( value_column [, ...] )
FOR unpivot_column IN ( { ( column_name [, ...] ) [ column_alias ] } [, ...] ) )
Parametrar
INCLUDE NULLSellerEXCLUDE NULLSOm du vill filtrera bort rader med
NULLivalue_column. Standardvärdet ärEXCLUDE NULLS.-
Ett okvalificerat kolumnalias. Den här kolumnen innehåller värdena. Typen av bok
value_columnär den minst vanliga typen av motsvarandecolumn_namekolumntyper. -
Ett okvalificerat kolumnalias. Den här kolumnen innehåller namnen på de roterade
column_nameeller derascolumn_alias. Typen avunpivot_columnärSTRING.Om det finns ett multivärde
UNPIVOTblir värdet sammanlänkning av avgränsade'_'column_names, om det inte finns någoncolumn_alias. -
Identifierar en kolumn i relation som inte pivoteras. Namnet kan vara kvalificerat. Alla
column_namemåste dela en minst vanlig typ. -
Ett valfritt namn som används i
unpivot_column. -
Du kan också ange en etikett för den resulterande tabellen. Om inkluderar
table_aliascolumn_identifierderas antal måste matcha antalet kolumner som skapas avUNPIVOT.
Result
En tillfällig tabell med följande formulär:
- Alla kolumner från
table_referenceutom de som heter somcolumn_names. - Av
unpivot_columntypenSTRING. - S
value_columnav de minst vanliga typerna av deras matchandecolumn_names.
Exempel
- A single column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW sales(location, year, q1, q2, q3, q4) AS
VALUES ('Toronto' , 2020, 100 , 80 , 70, 150),
('San Francisco', 2020, NULL, 20 , 50, 60),
('Toronto' , 2021, 110 , 90 , 80, 170),
('San Francisco', 2021, 70 , 120, 85, 105);
> SELECT *
FROM sales UNPIVOT INCLUDE NULLS
(sales FOR quarter IN (q1 AS `Jan-Mar`,
q2 AS `Apr-Jun`,
q3 AS `Jul-Sep`,
sales.q4 AS `Oct-Dec`));
location year quarter sales
—------------ —--- —------ —-----
Toronto 2020 Jan-Mar 100
Toronto 2020 Apr-Jun 80
Toronto 2020 Jul-Sep 70
Toronto 2020 Oct-Dec 150
San Francisco 2020 Jan-Mar null
San Francisco 2020 Apr-Jun 20
San Francisco 2020 Jul-Sep 50
San Francisco 2020 Oct-Dec 60
Toronto 2021 Jan-Mar 110
Toronto 2021 Apr-Jun 90
Toronto 2021 Jul-Sep 80
Toronto 2021 Oct-Dec 170
San Francisco 2021 Jan-Mar 70
San Francisco 2021 Apr-Jun 120
San Francisco 2021 Jul-Sep 85
San Francisco 2021 Oct-Dec 105
-- This is equivalent to:
> SELECT location, year,
inline(arrays_zip(array('Jan-Mar', 'Apr-Jun', 'Jul-Sep', 'Oct-Dec'),
array(q1 , q2 , q3 , q4)))
AS (quarter, sales)
FROM sales;
- A multi column UNPIVOT
> CREATE OR REPLACE TEMPORARY VIEW oncall
(year, week, area , name1 , email1 , phone1 , name2 , email2 , phone2) AS
VALUES (2022, 1 , 'frontend', 'Freddy', 'fred@alwaysup.org' , 15551234567, 'Fanny' , 'fanny@lwaysup.org' , 15552345678),
(2022, 1 , 'backend' , 'Boris' , 'boris@alwaysup.org', 15553456789, 'Boomer', 'boomer@lwaysup.org', 15554567890),
(2022, 2 , 'frontend', 'Franky', 'frank@lwaysup.org' , 15555678901, 'Fin' , 'fin@alwaysup.org' , 15556789012),
(2022, 2 , 'backend' , 'Bonny' , 'bonny@alwaysup.org', 15557890123, 'Bea' , 'bea@alwaysup.org' , 15558901234);
> SELECT *
FROM oncall UNPIVOT ((name, email, phone) FOR precedence IN ((name1, email1, phone1) AS primary,
(name2, email2, phone2) AS secondary));
year week area precedence name email phone
---- ---- -------- ---------- ------ ------------------ -----------
2022 1 frontend primary Freddy fred@alwaysup.org 15551234567
2022 1 frontend secondary Fanny fanny@lwaysup.org 15552345678
2022 1 backend primary Boris boris@alwaysup.org 15553456789
2022 1 backend secondary Boomer boomer@lwaysup.org 15554567890
2022 2 frontend primary Franky frank@lwaysup.org 15555678901
2022 2 frontend secondary Fin fin@alwaysup.org 15556789012
2022 2 backend primary Bonny bonny@alwaysup.org 15557890123
2022 2 backend secondary Bea bea@alwaysup.org 15558901234
-- This is equivalent to:
> SELECT year, week, area,
inline(arrays_zip(array('primary', 'secondary'),
array(name1, name2),
array(email1, email2),
array(phone1, phone2)))
AS (precedence, name, email, phone)
FROM oncall;