Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Gäller för:
Databricks SQL
Databricks Runtime
Definierar en tillfällig resultatuppsättning som du kan referera till flera gånger inom omfånget för en SQL-instruktion. En CTE används huvudsakligen i en SELECT-instruktion.
Syntax
WITH [ RECURSIVE ] common_table_expression [, ...]
common_table_expression
view_identifier [ ( column_identifier [, ...] ) ] [ recursion_limit ] [ AS ] ( query | recursive_query )
recursion_limit
MAX RECURSION LEVEL maxLevel
recursive_query
base_case_query UNION ALL step_case_query
Parametrar
REKURSIV
Gäller för:
Databricks SQL
Databricks Runtime 17.0 och senareNär det anges kan de vanliga tabelluttrycken innehålla en
recursive_query.view_identifier
Ett identifieringsnummer som refererar till
common_table_expressioncolumn_identifier
En valfri identifierare som en kolumn i
common_table_expressionkan refereras till.Om
column_identifiers anges måste deras antal matcha antalet kolumner som returneras avquery. Om inga namn anges härleds kolumnnamnen frånquery.MAXIMAL REKURSIONSNIVÅ maxLevel
Gäller för:
Databricks SQL
Databricks Runtime 17.0 och senareAnger det maximala antalet rekursiva steg som kan utföras av en rekursiv CTE.
maxLevelmåste vara en INTEGER-literal > 0. Standardvärdet är 100.Om
maxLimitöverskrids, utlöses RECURSION_LEVEL_LIMIT_EXCEEDED. Om CTE inte är rekursiv ignoreras den här satsen.-
En fråga som skapar en resultatuppsättning.
recursive_query
Gäller för:
Databricks SQL
Databricks Runtime 17.0 och senareNär
RECURSIVEhar angetts kan en fråga i en CTE referera till sig själv. Detta gör en CTE till en rekursiv CTE.-
Den här underfrågan innehåller fröet eller fästpunkten för rekursionen. Den får inte referera till
view_identifier. -
Den här underfrågan genererar en ny uppsättning rader baserat på föregående steg. För att vara rekursiv måste den referera till
view_identifier.
-
Begränsningar
Rekursiva CTE:er stöds inte för
UPDATE,DELETEochMERGE-instruktioner.step_subqueryfår inte innehålla korrelerade kolumnreferenser tillview_identifier.Om du anropar slumptalsgeneratorer från den rekursiva delen kan samma slumpmässiga tal genereras i varje iteration.
Den totala storleken på resultatuppsättningen är begränsad till 1 000 000 rader. Den här gränsen kan åsidosättas om instruktionen
SELECTsom kör den rekursiva CTE innehåller enLIMIT-sats som effektivt styr rekursionen.Gäller för:
Databricks Runtime 17.2 och senareLIMIT ALLupphäver gränsen helt.
Exempel
Grundläggande CTE-exempel
CTE med flera kolumnalias
> WITH t(x, y) AS (SELECT 1, 2)
SELECT * FROM t WHERE x = 1 AND y = 2;
1 2
CTE i CTE-definition
> WITH t AS (
WITH t2 AS (SELECT 1)
SELECT * FROM t2)
SELECT * FROM t;
1
CTE i underfrågor
> SELECT max(c) FROM (
WITH t(c) AS (SELECT 1)
SELECT * FROM t);
1
CTE i underfrågeuttryck
> SELECT (WITH t AS (SELECT 1)
SELECT * FROM t);
1
CTE i CREATE VIEW instruktion
> CREATE VIEW v AS
WITH t(a, b, c, d) AS (SELECT 1, 2, 3, 4)
SELECT * FROM t;
> SELECT * FROM v;
1 2 3 4
CTE-namn är avgränsade
> WITH t AS (SELECT 1),
t2 AS (
WITH t AS (SELECT 2)
SELECT * FROM t)
SELECT * FROM t2;
2
Rekursiva frågeexempel
Exempel på riktade grafer
I följande exempel visas hur du hittar alla destinationer från New York till andra städer, inklusive direktvägar och de som dirigeras genom andra städer:
> DROP VIEW IF EXISTS routes;
> CREATE TEMPORARY VIEW routes(origin, destination) AS VALUES
('New York', 'Washington'),
('New York', 'Boston'),
('Boston', 'New York'),
('Washington', 'Boston'),
('Washington', 'Raleigh');
> WITH RECURSIVE destinations_from_new_york AS (
SELECT 'New York' AS destination, ARRAY('New York') AS path, 0 AS length
UNION ALL
SELECT r.destination, CONCAT(d.path, ARRAY(r.destination)), d.length + 1
FROM routes AS r
JOIN destinations_from_new_york AS d
ON d.destination = r.origin AND NOT ARRAY_CONTAINS(d.path, r.destination)
)
SELECT * FROM destinations_from_new_york;
destination path length
----------- ----------------------------------- ------
New York ["New York"] 0
Washington ["New York","Washington"] 1
Boston ["New York","Boston"] 1
Boston ["New York","Washington","Boston"] 2
Raleigh ["New York","Washington","Raleigh"] 2
I följande exempel visas hur du passerar en riktad graf och kontrollerar om det finns en oändlig loop i blädreringsdiagrammet:
> DROP TABLE IF EXISTS graph;
> CREATE TABLE IF NOT EXISTS graph( f int, t int, label string );
> INSERT INTO graph VALUES
(1, 2, 'arc 1 -> 2'),
(1, 3, 'arc 1 -> 3'),
(2, 3, 'arc 2 -> 3'),
(1, 4, 'arc 1 -> 4'),
(4, 5, 'arc 4 -> 5'),
(5, 1, 'arc 5 -> 1');
> WITH RECURSIVE search_graph(f, t, label, path, cycle) AS (
SELECT *, array(struct(g.f, g.t)), false FROM graph g
UNION ALL
SELECT g.*, path || array(struct(g.f, g.t)), array_contains(path, struct(g.f, g.t))
FROM graph g, search_graph sg
WHERE g.f = sg.t AND NOT cycle
)
SELECT path FROM search_graph;
Resultatet är en uppsättning sökvägar med ökad längd, där cykler undviks och resulterar i en icke-oändlig sökväg.
[{"f":1,"t":4},{"f":4,"t":5},{"f":5,"t":1},{"f":1,"t":2},{"f":2,"t":3}]`
som besöker alla noder med ett tydligt stopp vid slutpunkten "3".
En djupsökning uppnås genom att ändra den sista raden för att ordna efter path kolumn:
SELECT * FROM search_graph ORDER BY path;
Grundläggande rekursiva tekniker
Enkelt loopliknande exempel
> WITH RECURSIVE r(col) AS (
SELECT 'a'
UNION ALL
SELECT col || char(ascii(substr(col, -1)) + 1) FROM r WHERE LENGTH(col) < 10
)
SELECT * FROM r;
col
----------
a
ab
abc
abcd
abcde
abcdef
abcdefg
abcdefgh
abcdefghi
abcdefghij
Ett annat loopliknande exempel
> WITH RECURSIVE t(n) AS (
SELECT 'foo'
UNION ALL
SELECT n || ' bar' FROM t WHERE length(n) < 20
)
SELECT n AS is_text FROM t;
is_text
-------
foo
foo bar
foo bar bar
foo bar bar bar
foo bar bar bar bar
foo bar bar bar bar bar
Anropa en rekursiv CTE från en annan CTE
> WITH RECURSIVE x(id) AS (VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 5),
y(id) AS (VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 10)
SELECT y.*, x.* FROM y LEFT JOIN x USING (id);
id id
-- --
1 1
4 4
6 null
3 3
5 5
2 2
Anropa en icke-rekursiv CTE från en rekursiv CTE
> WITH RECURSIVE
y (id) AS (VALUES (1)),
x (id) AS (SELECT * FROM y UNION ALL SELECT id+1 FROM x WHERE id < 5)
SELECT * FROM x;
id
--
1
2
3
4
5
Temporära vyer
> CREATE OR REPLACE TEMPORARY VIEW nums AS
WITH RECURSIVE nums (n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM nums WHERE n < 6
)
SELECT * FROM nums;
> SELECT * FROM nums;
n
__
1
2
3
4
5
6
INSERT till en tabell
> CREATE TABLE rt(level INT);
> WITH RECURSIVE r(level) AS (
VALUES (0)
UNION ALL
SELECT level + 1 FROM r WHERE level < 9
)
INSERT INTO rt SELECT * FROM r;
> SELECT * from rt;
level
-----
0
1
2
3
4
5
6
7
8
9
Kapslad rekursiv CTE
-- Nested recursive CTE are supported (only inside anchor)
-- Returns a triangular half – total of 55 rows – of a 10x10 square of numbers 1-10
> WITH RECURSIVE t(j) AS (
WITH RECURSIVE s(i) AS (
VALUES (1)
UNION ALL
SELECT i+1 FROM s WHERE i < 10
)
SELECT i FROM s
UNION ALL
SELECT j+1 FROM t WHERE j < 10
)
SELECT * FROM t;
j
--
1
2
2
3
3
3
4
...
9
10
10
10
10
10
10
10
10
10
10
Hedra LIMIT
> WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t
)
SELECT * FROM t LIMIT 10;
n
--
1
2
3
4
5
6
7
8
9
10
Exempel på organisationsträd
Extrahera alla avdelningar under "A"
> CREATE TABLE department (
id INTEGER, -- department ID
parent_department INTEGER, -- upper department ID
name string -- department name
);
> INSERT INTO department VALUES
(0, NULL, 'ROOT'),
(1, 0, 'A'),
(2, 1, 'B'),
(3, 2, 'C'),
(4, 2, 'D'),
(5, 0, 'E'),
(6, 4, 'F'),
(7, 5, 'G');
> WITH RECURSIVE subdepartment AS (
SELECT name as root_name, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.root_name, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
root_name id parent_department name
--------- -- ----------------- ----
A 1 0 A
A 2 1 B
A 3 2 C
A 4 2 D
A 6 4 F
Extrahera nivånumret
> WITH RECURSIVE subdepartment(level, id, parent_department, name) AS (
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
level id parent_department name
----- -- ----------------- ----
1 1 0 A
2 2 1 B
3 3 2 C
3 4 2 D
4 6 4 F
Filtrering efter nivå (nivå 2 eller mer)
> WITH RECURSIVE subdepartment(level, id, parent_department, name) AS (
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment WHERE level >= 2 ORDER BY name;
level id parent_department name
----- -- ----------------- ----
2 2 1 B
3 3 2 C
3 4 2 D
4 6 4 F
Binära trädexempel
Hitta alla sökvägar från noder på andra nivån
-- Another tree example is to find all paths from the second level nodes "2" and "3" to all other nodes.
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), (2, 1), (3, 1), (4, 2), (5, 2), ( 6, 2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14, 9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.*, t2.*
FROM t AS t1 JOIN t AS t2
ON (t1.path[0] = t2.path[0] AND
size(t1.path) = 1 AND
size(t2.path) > 1)
ORDER BY t1.id, t2.id;
id path id path
-- ---- -- ------------
2 [2] 4 [2,4]
2 [2] 5 [2,5]
2 [2] 6 [2,6]
2 [2] 9 [2,4,9]
2 [2] 10 [2,4,10]
2 [2] 14 [2,4,9,14]
3 [3] 7 [3,7]
3 [3] 8 [3,8]
3 [3] 11 [3,7,11]
3 [3] 12 [3,7,12]
3 [3] 13 [3,7,13]
3 [3] 15 [3,7,11,15]
3 [3] 16 [3,7,11,16]
Räkna lövnoder som kan nås från noder
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), ( 2,1), (3,1 ), ( 4,2), ( 5,2), ( 6,2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14,9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.id, count(*)
FROM t AS t1 JOIN t AS t2
ON (t1.path[0] = t2.path[0] AND
size(t1.path) = 1 AND
size(t2.path) > 1)
GROUP BY t1.id
ORDER BY t1.id;
id count(1)
-- --------
2 6
3 7
Visa sökvägar till lövnoder
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), ( 2,1), ( 3,1), ( 4,2), ( 5,2), ( 6,2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14,9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT id, path FROM t
ORDER BY id;
id path
-- -----------
1 []
2 [2]
3 [3]
4 [2,4]
5 [2,5]
6 [2,6]
7 [3,7]
8 [3,8]
9 [2,4,9]
10 [2,4,10]
11 [3,7,11]
12 [3,7,12]
13 [3,7,13]
14 [2,4,9,14]
15 [3,7,11,15]
16 [3,7,11,16]
Avancerade exempel
Sudoku-lösare
-- Sudoku solver (https://sqlite.org)
-- Highlighted text represent the row-wise scan of a 9x9 Sudoku grid where missing values are represented with spaces.
> WITH RECURSIVE generate_series(gs) AS (
SELECT 1
UNION ALL
SELECT gs+1 FROM generate_series WHERE gs < 9
),
x( s, ind ) AS
( SELECT sud, position( ' ' IN sud )
FROM (SELECT '4 8725 5 64 213 29 8 6 73 1 8 2 4 97 15 2 3 2 1 659 28 2 37946'::STRING
AS sud) xx
UNION ALL
SELECT substr( s, 1, ind - 1 ) || z || substr( s, ind + 1 ),
position(' ' in repeat('x',ind) || substr( s, ind + 1 ) )
FROM x,
(SELECT gs::STRING AS z FROM generate_series) z
WHERE ind > 0
AND NOT EXISTS ( SELECT *
FROM generate_series
WHERE z.z = substr( s, ( (ind - 1 ) DIV 9 ) * 9 + gs, 1 )
OR z.z = substr( s, mod( ind - 1, 9 ) - 8 + gs * 9, 1 )
OR z.z = substr( s, mod( ( ( ind - 1 ) DIV 3 ), 3 ) * 3
+ ( ( ind - 1 ) DIV 27 ) * 27 + gs
+ ( ( gs - 1 ) DIV 3 ) * 6, 1 )
)
)
SELECT s FROM x WHERE ind = 0;
431872569587649213629351874245968731168723495973415628394286157716594382852137946
Du kan underspecificera problemet, till exempel genom att ersätta den inledande "4" med mellanslag, vilket ger två möjliga lösningar.
431872569587649213629351874245968731168723495973415628394286157716594382852137946
631872594587649213429351867245968731168723459973415628394286175716594382852137946
Hitta primtal (sil av Eratosthenes)
-- This is an implementation of the Sieve of Erastothenes algorithm for finding the prime numbers up to 150.
> WITH RECURSIVE t1(n) AS (
VALUES(2)
UNION ALL
SELECT n+1 FROM t1 WHERE n < 100
),
t2 (n, i) AS (
SELECT 2*n, 2
FROM t1 WHERE 2*n <= 150
UNION ALL
(
WITH t3(k) AS (
SELECT max(i) OVER () + 1 FROM t2
),
t4(k) AS (
SELECT DISTINCT k FROM t3
)
SELECT k*n, k
FROM t1 CROSS JOIN t4
WHERE k*k <= 150
)
)
SELECT n FROM t1 EXCEPT
SELECT n FROM t2
ORDER BY 1;
2
3
5
7
11
13
17
19
...
Använda MAX RECURSION LEVEL för att begränsa rekursionsdjupet
> WITH RECURSIVE t(n) MAX RECURSION LEVEL 10 AS (
VALUES(1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100
)
SELECT * FROM t;
Error: RECURSION_LEVEL_LIMIT_EXCEEDED
Använd LIMIT för att begränsa resultatuppsättningen och rekursionsdjupet
> WITH RECURSIVE t(n) AS (
VALUES(1)
UNION ALL
SELECT n+1 FROM t
)
SELECT * FROM t LIMIT 10;
n
---
1
2
3
4
5
6
7
8
9
10
LIMIT med ORDER BY förhindrar tidig uppsägning
-- LIMIT does not help if an ORDER BY clause is used, which prevents early termination of the recursion
> WITH RECURSIVE t(n) AS (
VALUES(1)
UNION ALL
SELECT n+1 FROM t
)
SELECT * FROM t ORDER BY n LIMIT 10;
Error: RECURSION_LEVEL_LIMIT_EXCEEDED