Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Samtidig orkestrering gör att flera agenter kan arbeta med samma uppgift parallellt. Varje agent bearbetar indata separat och deras resultat samlas in och aggregeras. Den här metoden passar bra för scenarier där olika perspektiv eller lösningar är värdefulla, till exempel brainstorming, ensemble-resonemang eller röstningssystem.
Vad du ska lära dig
- Så här definierar du flera agenter med olika expertis
- Så här dirigerar du dessa agenter för att arbeta samtidigt med en enda uppgift
- Så här samlar du in och bearbetar resultaten
I samtidig orkestrering arbetar flera agenter med samma uppgift samtidigt och oberoende, vilket ger olika perspektiv på samma indata.
Konfigurera Azure OpenAI-klienten
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Azure.AI.OpenAI;
using Azure.Identity;
using Microsoft.Agents.Workflows;
using Microsoft.Extensions.AI;
using Microsoft.Agents.AI;
// 1) Set up the Azure OpenAI client
var endpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT") ??
throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is not set.");
var deploymentName = Environment.GetEnvironmentVariable("AZURE_OPENAI_DEPLOYMENT_NAME") ?? "gpt-4o-mini";
var client = new AzureOpenAIClient(new Uri(endpoint), new AzureCliCredential())
.GetChatClient(deploymentName)
.AsIChatClient();
Definiera dina agenter
Skapa flera specialiserade agenter som ska arbeta med samma uppgift samtidigt:
// 2) Helper method to create translation agents
static ChatClientAgent GetTranslationAgent(string targetLanguage, IChatClient chatClient) =>
new(chatClient,
$"You are a translation assistant who only responds in {targetLanguage}. Respond to any " +
$"input by outputting the name of the input language and then translating the input to {targetLanguage}.");
// Create translation agents for concurrent processing
var translationAgents = (from lang in (string[])["French", "Spanish", "English"]
select GetTranslationAgent(lang, client));
Konfigurera samtidig orkestrering
Skapa arbetsflödet med AgentWorkflowBuilder för att köra agenter parallellt:
// 3) Build concurrent workflow
var workflow = AgentWorkflowBuilder.BuildConcurrent(translationAgents);
Kör det samtidiga arbetsflödet och samla in resultat
Kör arbetsflödet och bearbeta händelser från alla agenter som körs samtidigt:
// 4) Run the workflow
var messages = new List<ChatMessage> { new(ChatRole.User, "Hello, world!") };
StreamingRun run = await InProcessExecution.StreamAsync(workflow, messages);
await run.TrySendMessageAsync(new TurnToken(emitEvents: true));
List<ChatMessage> result = new();
await foreach (WorkflowEvent evt in run.WatchStreamAsync().ConfigureAwait(false))
{
if (evt is AgentRunUpdateEvent e)
{
Console.WriteLine($"{e.ExecutorId}: {e.Data}");
}
else if (evt is WorkflowCompletedEvent completed)
{
result = (List<ChatMessage>)completed.Data!;
break;
}
}
// Display aggregated results from all agents
Console.WriteLine("===== Final Aggregated Results =====");
foreach (var message in result)
{
Console.WriteLine($"{message.Role}: {message.Content}");
}
Exempelutdata
French_Agent: English detected. Bonjour, le monde !
Spanish_Agent: English detected. ¡Hola, mundo!
English_Agent: English detected. Hello, world!
===== Final Aggregated Results =====
User: Hello, world!
Assistant: English detected. Bonjour, le monde !
Assistant: English detected. ¡Hola, mundo!
Assistant: English detected. Hello, world!
Viktiga begrepp
- Parallell körning: Alla agenter bearbetar indata samtidigt och oberoende
- AgentWorkflowBuilder.BuildConcurrent(): Skapar ett samtidigt arbetsflöde från en samling agenter
- Automatisk aggregering: Resultat från alla agenter samlas automatiskt in i slutresultatet
-
Händelseströmning: Realtidsövervakning av agentförlopp via
AgentRunUpdateEvent - Olika perspektiv: Varje agent tar med sig sin unika expertis till samma problem
Agenter är specialiserade entiteter som kan bearbeta uppgifter. Här definierar vi tre agenter: en forskningsexpert, en marknadsföringsexpert och en juridisk expert.
from agent_framework.azure import AzureChatClient
# 1) Create three domain agents using AzureChatClient
chat_client = AzureChatClient(credential=AzureCliCredential())
researcher = chat_client.create_agent(
instructions=(
"You're an expert market and product researcher. Given a prompt, provide concise, factual insights,"
" opportunities, and risks."
),
name="researcher",
)
marketer = chat_client.create_agent(
instructions=(
"You're a creative marketing strategist. Craft compelling value propositions and target messaging"
" aligned to the prompt."
),
name="marketer",
)
legal = chat_client.create_agent(
instructions=(
"You're a cautious legal/compliance reviewer. Highlight constraints, disclaimers, and policy concerns"
" based on the prompt."
),
name="legal",
)
Konfigurera samtidig orkestrering
Med ConcurrentBuilder klassen kan du skapa ett arbetsflöde för att köra flera agenter parallellt. Du skickar listan med agenter som deltagare.
from agent_framework import ConcurrentBuilder
# 2) Build a concurrent workflow
# Participants are either Agents (type of AgentProtocol) or Executors
workflow = ConcurrentBuilder().participants([researcher, marketer, legal]).build()
Kör det samtidiga arbetsflödet och samla in resultaten
from agent_framework import ChatMessage, WorkflowCompletedEvent
# 3) Run with a single prompt, stream progress, and pretty-print the final combined messages
completion: WorkflowCompletedEvent | None = None
async for event in workflow.run_stream("We are launching a new budget-friendly electric bike for urban commuters."):
if isinstance(event, WorkflowCompletedEvent):
completion = event
if completion:
print("===== Final Aggregated Conversation (messages) =====")
messages: list[ChatMessage] | Any = completion.data
for i, msg in enumerate(messages, start=1):
name = msg.author_name if msg.author_name else "user"
print(f"{'-' * 60}\n\n{i:02d} [{name}]:\n{msg.text}")
Exempelutdata
Sample Output:
===== Final Aggregated Conversation (messages) =====
------------------------------------------------------------
01 [user]:
We are launching a new budget-friendly electric bike for urban commuters.
------------------------------------------------------------
02 [researcher]:
**Insights:**
- **Target Demographic:** Urban commuters seeking affordable, eco-friendly transport;
likely to include students, young professionals, and price-sensitive urban residents.
- **Market Trends:** E-bike sales are growing globally, with increasing urbanization,
higher fuel costs, and sustainability concerns driving adoption.
- **Competitive Landscape:** Key competitors include brands like Rad Power Bikes, Aventon,
Lectric, and domestic budget-focused manufacturers in North America, Europe, and Asia.
- **Feature Expectations:** Customers expect reliability, ease-of-use, theft protection,
lightweight design, sufficient battery range for daily city commutes (typically 25-40 miles),
and low-maintenance components.
**Opportunities:**
- **First-time Buyers:** Capture newcomers to e-biking by emphasizing affordability, ease of
operation, and cost savings vs. public transit/car ownership.
...
------------------------------------------------------------
03 [marketer]:
**Value Proposition:**
"Empowering your city commute: Our new electric bike combines affordability, reliability, and
sustainable design—helping you conquer urban journeys without breaking the bank."
**Target Messaging:**
*For Young Professionals:*
...
------------------------------------------------------------
04 [legal]:
**Constraints, Disclaimers, & Policy Concerns for Launching a Budget-Friendly Electric Bike for Urban Commuters:**
**1. Regulatory Compliance**
- Verify that the electric bike meets all applicable federal, state, and local regulations
regarding e-bike classification, speed limits, power output, and safety features.
- Ensure necessary certifications (e.g., UL certification for batteries, CE markings if sold internationally) are obtained.
**2. Product Safety**
- Include consumer safety warnings regarding use, battery handling, charging protocols, and age restrictions.
Avancerat: Exekverare för anpassade agenter
Parallell orkestrering stöder anpassade exekverare som förser agenter med ytterligare logik. Detta är användbart när du behöver mer kontroll över hur agenter initieras och hur de bearbetar begäranden:
Definiera anpassade agentexekutorer
from agent_framework import (
AgentExecutorRequest,
AgentExecutorResponse,
ChatAgent,
Executor,
WorkflowContext,
handler,
)
class ResearcherExec(Executor):
agent: ChatAgent
def __init__(self, chat_client: AzureChatClient, id: str = "researcher"):
agent = chat_client.create_agent(
instructions=(
"You're an expert market and product researcher. Given a prompt, provide concise, factual insights,"
" opportunities, and risks."
),
name=id,
)
super().__init__(agent=agent, id=id)
@handler
async def run(self, request: AgentExecutorRequest, ctx: WorkflowContext[AgentExecutorResponse]) -> None:
response = await self.agent.run(request.messages)
full_conversation = list(request.messages) + list(response.messages)
await ctx.send_message(AgentExecutorResponse(self.id, response, full_conversation=full_conversation))
class MarketerExec(Executor):
agent: ChatAgent
def __init__(self, chat_client: AzureChatClient, id: str = "marketer"):
agent = chat_client.create_agent(
instructions=(
"You're a creative marketing strategist. Craft compelling value propositions and target messaging"
" aligned to the prompt."
),
name=id,
)
super().__init__(agent=agent, id=id)
@handler
async def run(self, request: AgentExecutorRequest, ctx: WorkflowContext[AgentExecutorResponse]) -> None:
response = await self.agent.run(request.messages)
full_conversation = list(request.messages) + list(response.messages)
await ctx.send_message(AgentExecutorResponse(self.id, response, full_conversation=full_conversation))
Skapa ett arbetsflöde med anpassade körverktyg
chat_client = AzureChatClient(credential=AzureCliCredential())
researcher = ResearcherExec(chat_client)
marketer = MarketerExec(chat_client)
legal = LegalExec(chat_client)
workflow = ConcurrentBuilder().participants([researcher, marketer, legal]).build()
Avancerat: Anpassad aggregerare
Som standard aggregerar samtidig orkestrering alla agentsvar i en lista med meddelanden. Du kan åsidosätta det här beteendet med en anpassad aggregator som bearbetar resultatet på ett specifikt sätt:
Definiera en anpassad aggregator
# Define a custom aggregator callback that uses the chat client to summarize
async def summarize_results(results: list[Any]) -> str:
# Extract one final assistant message per agent
expert_sections: list[str] = []
for r in results:
try:
messages = getattr(r.agent_run_response, "messages", [])
final_text = messages[-1].text if messages and hasattr(messages[-1], "text") else "(no content)"
expert_sections.append(f"{getattr(r, 'executor_id', 'expert')}:\n{final_text}")
except Exception as e:
expert_sections.append(f"{getattr(r, 'executor_id', 'expert')}: (error: {type(e).__name__}: {e})")
# Ask the model to synthesize a concise summary of the experts' outputs
system_msg = ChatMessage(
Role.SYSTEM,
text=(
"You are a helpful assistant that consolidates multiple domain expert outputs "
"into one cohesive, concise summary with clear takeaways. Keep it under 200 words."
),
)
user_msg = ChatMessage(Role.USER, text="\n\n".join(expert_sections))
response = await chat_client.get_response([system_msg, user_msg])
# Return the model's final assistant text as the completion result
return response.messages[-1].text if response.messages else ""
Skapa ett arbetsflöde med anpassad aggregator
workflow = (
ConcurrentBuilder()
.participants([researcher, marketer, legal])
.with_aggregator(summarize_results)
.build()
)
completion: WorkflowCompletedEvent | None = None
async for event in workflow.run_stream("We are launching a new budget-friendly electric bike for urban commuters."):
if isinstance(event, WorkflowCompletedEvent):
completion = event
if completion:
print("===== Final Consolidated Output =====")
print(completion.data)
Exempel på utdata med anpassad aggregator
===== Final Consolidated Output =====
Urban e-bike demand is rising rapidly due to eco-awareness, urban congestion, and high fuel costs,
with market growth projected at a ~10% CAGR through 2030. Key customer concerns are affordability,
easy maintenance, convenient charging, compact design, and theft protection. Differentiation opportunities
include integrating smart features (GPS, app connectivity), offering subscription or leasing options, and
developing portable, space-saving designs. Partnering with local governments and bike shops can boost visibility.
Risks include price wars eroding margins, regulatory hurdles, battery quality concerns, and heightened expectations
for after-sales support. Accurate, substantiated product claims and transparent marketing (with range disclaimers)
are essential. All e-bikes must comply with local and federal regulations on speed, wattage, safety certification,
and labeling. Clear warranty, safety instructions (especially regarding batteries), and inclusive, accessible
marketing are required. For connected features, data privacy policies and user consents are mandatory.
Effective messaging should target young professionals, students, eco-conscious commuters, and first-time buyers,
emphasizing affordability, convenience, and sustainability. Slogan suggestion: "Charge Ahead—City Commutes Made
Affordable." Legal review in each target market, compliance vetting, and robust customer support policies are
critical before launch.
Viktiga begrepp
- Parallell körning: Alla agenter arbetar med uppgiften samtidigt och oberoende av varandra
- Resultatsammansättning: Resultat samlas in och kan bearbetas antingen som standard eller anpassad aggregator
- Olika perspektiv: Varje agent tar med sig sin unika expertis till samma problem
- Flexibla deltagare: Du kan använda agenter direkt eller omsluta dem i anpassade utförare
- Anpassad bearbetning: Åsidosätt standardaggregatorn för att syntetisera resultat på domänspecifika sätt