Delen via


Environment Klas

Hiermee configureert u een reproduceerbare Python-omgeving voor machine learning-experimenten.

Een omgeving definieert Python-pakketten, omgevingsvariabelen en Docker-instellingen die worden gebruikt in machine learning-experimenten, waaronder in gegevensvoorbereiding, training en implementatie in een webservice. Een omgeving wordt beheerd en geversied in een Azure Machine Learning Workspace. U kunt een bestaande omgeving bijwerken en een versie ophalen om opnieuw te gebruiken. Omgevingen zijn exclusief voor de werkruimte waarin ze zijn gemaakt en kunnen niet worden gebruikt in verschillende werkruimten.

Zie Herbruikbare omgevingen maken en beheren voor meer informatie over omgevingen.

Klasseomgevingconstructor.

Constructor

Environment(name, **kwargs)

Parameters

Name Description
name
Vereist

De naam van de omgeving.

Opmerking

Start uw omgevingsnaam niet met 'Microsoft' of 'AzureML'. De voorvoegsels 'Microsoft' en 'AzureML' zijn gereserveerd voor gecureerde omgevingen. Zie Herbruikbare omgevingen maken en beheren voor meer informatie over gecureerde omgevingen.

Opmerkingen

Azure Machine Learning biedt gecureerde omgevingen, die vooraf gedefinieerde omgevingen zijn die goede uitgangspunten bieden voor het bouwen van uw eigen omgevingen. Gecureerde omgevingen worden ondersteund door Docker-installatiekopieën in de cache, wat een lagere voorbereidingskosten voor uitvoering biedt. Zie Herbruikbare omgevingen maken en beheren voor meer informatie over gecureerde omgevingen.

Er zijn verschillende manieren waarop omgevingen worden gemaakt in Azure Machine Learning, waaronder wanneer u:

In het volgende voorbeeld ziet u hoe u een nieuwe omgeving instantieert.


   from azureml.core import Environment
   myenv = Environment(name="myenv")

U kunt een omgeving beheren door deze te registreren. Hierdoor kunt u de versies van de omgeving bijhouden en deze in toekomstige uitvoeringen opnieuw gebruiken.


   myenv.register(workspace=ws)

Zie de Jupyter Notebook Using environments voor meer voorbeelden van het werken met omgevingen.

Variabelen

Name Description
Environment.databricks

De sectie configureert azureml.core.databricks.DatabricksSection-bibliotheekafhankelijkheden.

docker

In deze sectie worden instellingen geconfigureerd die betrekking hebben op de uiteindelijke Docker-installatiekopie die is gebouwd op basis van de specificaties van de omgeving en of Docker-containers moeten worden gebruikt om de omgeving te bouwen.

inferencing_stack_version

In deze sectie wordt de versie van de deductiestack opgegeven die aan de installatiekopie is toegevoegd. Als u wilt voorkomen dat u een deductiestack toevoegt, moet u deze waarde niet instellen. Geldige waarde: 'latest'.

python

In deze sectie wordt aangegeven welke Python-omgeving en -interpreter moeten worden gebruikt voor de doel-compute.

spark

In de sectie worden Spark-instellingen geconfigureerd. Het wordt alleen gebruikt wanneer framework is ingesteld op PySpark.

r

In deze sectie wordt aangegeven welke R-omgeving moet worden gebruikt voor de doel-rekenkracht.

version

De versie van de omgeving.

asset_id

Asset-id. Wordt ingevuld wanneer een omgeving is geregistreerd.

Methoden

add_private_pip_wheel

Upload het privé-pip-wielbestand op schijf naar de Azure Storage-blob die is gekoppeld aan de werkruimte.

Hiermee wordt een uitzondering gegenereerd als er al een privé-pip-wiel met dezelfde naam bestaat in de blob van de werkruimteopslag.

build

Bouw een Docker-installatiekopieën voor deze omgeving in de cloud.

build_local

Bouw de lokale Docker- of Conda-omgeving.

clone

Kloon het omgevingsobject.

Retourneert een nieuw exemplaar van het omgevingsobject met een nieuwe naam.

from_conda_specification

Maak een omgevingsobject op basis van een YAML-bestand met omgevingsspecificaties.

Als u een YAML-bestand met omgevingsspecificaties wilt ophalen, raadpleegt u Omgevingen beheren in de gebruikershandleiding van Conda.

from_docker_build_context

Maak een omgevingsobject op basis van een Docker-buildcontext.

from_docker_image

Maak een omgevingsobject op basis van een docker-basisinstallatiekopieën met optionele Python-afhankelijkheden.

Python-laag wordt toegevoegd aan de omgeving als conda_specification of pip_requirements is opgegeven. conda_specification en pip_requirements sluiten elkaar wederzijds uit.

from_dockerfile

Maak een omgevingsobject op basis van een Dockerfile met optionele Python-afhankelijkheden.

Python-laag wordt toegevoegd aan de omgeving als conda_specification of pip_requirements is opgegeven. conda_specification en pip_requirements sluiten elkaar wederzijds uit.

from_existing_conda_environment

Maak een omgevingsobject dat is gemaakt op basis van een lokaal bestaande Conda-omgeving.

Voer uit conda env listom een lijst met bestaande Conda-omgevingen op te halen. Zie Omgevingen beheren in de gebruikershandleiding van Conda voor meer informatie.

from_pip_requirements

Maak een omgevingsobject dat is gemaakt op basis van een PIP-vereistenbestand.

Losgemaakte pip-afhankelijkheid wordt toegevoegd als pip_version niet is opgegeven.

get

Retourneer het omgevingsobject.

Als het label is opgegeven, wordt het object dat eerder is gelabeld met de waarde geretourneerd. Er kan slechts één versie- of labelparameters worden opgegeven. Als beide worden gemist, wordt de nieuwste versie van het omgevingsobject geretourneerd.

get_image_details

Retourneer de details van de afbeelding.

label

Label het omgevingsobject in uw werkruimte met de opgegeven waarden.

list

Retourneert een woordenlijst met omgevingen in de werkruimte.

load_from_directory

Laad een omgevingsdefinitie uit de bestanden in een map.

register

Registreer het omgevingsobject in uw werkruimte.

save_to_directory

Sla een omgevingsdefinitie op in een map in een eenvoudig te bewerken indeling.

add_private_pip_wheel

Upload het privé-pip-wielbestand op schijf naar de Azure Storage-blob die is gekoppeld aan de werkruimte.

Hiermee wordt een uitzondering gegenereerd als er al een privé-pip-wiel met dezelfde naam bestaat in de blob van de werkruimteopslag.

static add_private_pip_wheel(workspace, file_path, exist_ok=False)

Parameters

Name Description
workspace
Vereist

Het werkruimteobject dat moet worden gebruikt om het privépijpwiel te registreren.

file_path
Vereist
str

Pad naar het lokale pip-wiel op schijf, inclusief de bestandsextensie.

exist_ok

Geeft aan of er een uitzondering moet worden gegenereerd als het wiel al bestaat.

Default value: False

Retouren

Type Description
str

Retourneert de volledige URI naar het geüploade pip-wiel in Azure Blob Storage voor gebruik in conda-afhankelijkheden.

build

Bouw een Docker-installatiekopieën voor deze omgeving in de cloud.

build(workspace, image_build_compute=None)

Parameters

Name Description
workspace
Vereist

De werkruimte en de bijbehorende Azure Container Registry waar de installatiekopieën worden opgeslagen.

image_build_compute
str

De naam van de berekening waar de installatiekopieën worden gebouwd

Default value: None

Retouren

Type Description

Retourneert het object met details van de build van de installatiekopieën.

build_local

Bouw de lokale Docker- of Conda-omgeving.

build_local(workspace, platform=None, **kwargs)

Parameters

Name Description
workspace
Vereist

De werkruimte.

platform
str

Perron. Een van Linux, Windows of OSX. Huidig platform wordt standaard gebruikt.

Default value: None
kwargs
Vereist

Geavanceerde trefwoordargumenten

Retouren

Type Description
str

Streamt de on-going Docker- of Conda-uitvoer naar de console.

Opmerkingen

In de volgende voorbeelden ziet u hoe u een lokale omgeving bouwt. Zorg ervoor dat de werkruimte wordt geïnstantieerd als een geldig azureml.core.workspace.Workspace-object

Lokale Conda-omgeving bouwen


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace)

Lokale Docker-omgeving bouwen


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace, useDocker=True)

Docker-installatiekopieën lokaal bouwen en desgewenst pushen naar het containerregister dat is gekoppeld aan de werkruimte


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace, useDocker=True, pushImageToWorkspaceAcr=True)

clone

Kloon het omgevingsobject.

Retourneert een nieuw exemplaar van het omgevingsobject met een nieuwe naam.

clone(new_name)

Parameters

Name Description
new_name
Vereist
str

Nieuwe omgevingsnaam

Retouren

Type Description

Nieuw omgevingsobject

from_conda_specification

Maak een omgevingsobject op basis van een YAML-bestand met omgevingsspecificaties.

Als u een YAML-bestand met omgevingsspecificaties wilt ophalen, raadpleegt u Omgevingen beheren in de gebruikershandleiding van Conda.

static from_conda_specification(name, file_path)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

file_path
Vereist
str

Het YAML-bestandspad van de Conda-omgevingsspecificatie.

Retouren

Type Description

Het omgevingsobject.

from_docker_build_context

Maak een omgevingsobject op basis van een Docker-buildcontext.

static from_docker_build_context(name, docker_build_context)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

docker_build_context
Vereist

Het DockerBuildContext-object.

Retouren

Type Description

Het omgevingsobject.

from_docker_image

Maak een omgevingsobject op basis van een docker-basisinstallatiekopieën met optionele Python-afhankelijkheden.

Python-laag wordt toegevoegd aan de omgeving als conda_specification of pip_requirements is opgegeven. conda_specification en pip_requirements sluiten elkaar wederzijds uit.

static from_docker_image(name, image, container_registry=None, conda_specification=None, pip_requirements=None)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

image
Vereist
str

volledig gekwalificeerde installatiekopieënnaam.

conda_specification
str

conda-specificatiebestand.

Default value: None
container_registry

details van de privécontaineropslagplaats.

Default value: None
pip_requirements
str

pip-vereistenbestand.

Default value: None

Retouren

Type Description

Het omgevingsobject.

Opmerkingen

Als de basisinstallatiekopieën afkomstig zijn van een privéopslagplaats waarvoor autorisatie is vereist en autorisatie niet is ingesteld op het niveau van de AzureML-werkruimte, is container_registry vereist

from_dockerfile

Maak een omgevingsobject op basis van een Dockerfile met optionele Python-afhankelijkheden.

Python-laag wordt toegevoegd aan de omgeving als conda_specification of pip_requirements is opgegeven. conda_specification en pip_requirements sluiten elkaar wederzijds uit.

static from_dockerfile(name, dockerfile, conda_specification=None, pip_requirements=None)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

dockerfile
Vereist
str

Dockerfile-inhoud of -pad naar het bestand.

conda_specification
str

conda-specificatiebestand.

Default value: None
pip_requirements
str

pip-vereistenbestand.

Default value: None

Retouren

Type Description

Het omgevingsobject.

from_existing_conda_environment

Maak een omgevingsobject dat is gemaakt op basis van een lokaal bestaande Conda-omgeving.

Voer uit conda env listom een lijst met bestaande Conda-omgevingen op te halen. Zie Omgevingen beheren in de gebruikershandleiding van Conda voor meer informatie.

static from_existing_conda_environment(name, conda_environment_name)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

conda_environment_name
Vereist
str

De naam van een lokaal bestaande Conda-omgeving.

Retouren

Type Description

Het omgevingsobject of Geen als het exporteren van het conda-specificatiebestand mislukt.

from_pip_requirements

Maak een omgevingsobject dat is gemaakt op basis van een PIP-vereistenbestand.

Losgemaakte pip-afhankelijkheid wordt toegevoegd als pip_version niet is opgegeven.

static from_pip_requirements(name, file_path, pip_version=None)

Parameters

Name Description
name
Vereist
str

De naam van de omgeving.

file_path
Vereist
str

Het pad naar het pip-vereistenbestand.

pip_version
str

Pip-versie voor conda-omgeving.

Default value: None

Retouren

Type Description

Het omgevingsobject.

get

Retourneer het omgevingsobject.

Als het label is opgegeven, wordt het object dat eerder is gelabeld met de waarde geretourneerd. Er kan slechts één versie- of labelparameters worden opgegeven. Als beide worden gemist, wordt de nieuwste versie van het omgevingsobject geretourneerd.

static get(workspace, name, version=None, label=None)

Parameters

Name Description
workspace
Vereist

De werkruimte die de omgeving bevat.

name
Vereist
str

De naam van de omgeving die moet worden geretourneerd.

version
str

De versie van de omgeving die moet worden geretourneerd.

Default value: None
label
str

Waarde van omgevingslabel.

Default value: None

Retouren

Type Description

Het omgevingsobject.

get_image_details

Retourneer de details van de afbeelding.

get_image_details(workspace)

Parameters

Name Description
workspace
Vereist

De werkruimte.

Retouren

Type Description

Retourneert de afbeeldingsgegevens als dict

label

Label het omgevingsobject in uw werkruimte met de opgegeven waarden.

static label(workspace, name, version, labels)

Parameters

Name Description
workspace
Vereist

De werkruimte

name
Vereist
str

Naam van de omgeving

version
Vereist
str

Omgevingsversie

labels
Vereist

Waarden om omgeving te labelen met

list

Retourneert een woordenlijst met omgevingen in de werkruimte.

static list(workspace)

Parameters

Name Description
workspace
Vereist

De werkruimte van waaruit omgevingen moeten worden weergegeven.

Retouren

Type Description
<xref:builtin.dict>[str, Environment]

Een woordenlijst met omgevingsobjecten.

load_from_directory

Laad een omgevingsdefinitie uit de bestanden in een map.

static load_from_directory(path)

Parameters

Name Description
path
Vereist
str

Pad naar de bronmap.

register

Registreer het omgevingsobject in uw werkruimte.

register(workspace)

Parameters

Name Description
workspace
Vereist

De werkruimte

name
Vereist
str

Retouren

Type Description

Retourneert het omgevingsobject

save_to_directory

Sla een omgevingsdefinitie op in een map in een eenvoudig te bewerken indeling.

save_to_directory(path, overwrite=False)

Parameters

Name Description
path
Vereist
str

Pad naar de doelmap.

overwrite

Als een bestaande map moet worden overschreven. De standaardwaarde is onwaar.

Default value: False

Kenmerken

environment_variables

Gebruik het object azureml.core.RunConfiguration om runtimevariabelen in te stellen.