BatchEndpointOperations Class  
BatchEndpointOperations.
You should not instantiate this class directly. Instead, you should create an MLClient instance that instantiates it for you and attaches it as an attribute.
Constructor
BatchEndpointOperations(operation_scope: OperationScope, operation_config: OperationConfig, service_client_10_2023: AzureMachineLearningServices, all_operations: OperationsContainer, credentials: TokenCredential | None = None, **kwargs: Any)
		Parameters
| Name | Description | 
|---|---|
| 
		 operation_scope 
			
				Required
			 
	 | 
	
		 
				<xref:azure.ai.ml._scope_dependent_operations.OperationScope>
		 
		Scope variables for the operations classes of an MLClient object.  | 
| 
		 operation_config 
			
				Required
			 
	 | 
	
		 
				<xref:azure.ai.ml._scope_dependent_operations.OperationConfig>
		 
		Common configuration for operations classes of an MLClient object.  | 
| 
		 service_client_10_2023 
			
				Required
			 
	 | 
	
		 
				<xref:<xref:azure.ai.ml._restclient.v2023_10_01._azure_machine_learning_workspaces. AzureMachineLearningWorkspaces>>
		 
		Service client to allow end users to operate on Azure Machine Learning Workspace resources.  | 
| 
		 all_operations 
			
				Required
			 
	 | 
	
		 
				<xref:azure.ai.ml._scope_dependent_operations.OperationsContainer>
		 
		All operations classes of an MLClient object.  | 
| 
		 credentials 
	 | 
	
		
		 Credential to use for authentication. Default value: None 
			 | 
Methods
| begin_create_or_update | 
					 Create or update a batch endpoint.  | 
			
| begin_delete | 
					 Delete a batch Endpoint.  | 
			
| get | 
					 Get a Endpoint resource.  | 
			
| invoke | 
					 Invokes the batch endpoint with the provided payload.  | 
			
| list | 
					 List endpoints of the workspace.  | 
			
| list_jobs | 
					 List jobs under the provided batch endpoint deployment. This is only valid for batch endpoint.  | 
			
begin_create_or_update
Create or update a batch endpoint.
begin_create_or_update(endpoint: BatchEndpoint) -> LROPoller[BatchEndpoint]
		Parameters
| Name | Description | 
|---|---|
| 
		 endpoint 
			
				Required
			 
	 | 
	
		
		 The endpoint entity.  | 
Returns
| Type | Description | 
|---|---|
| 
					 A poller to track the operation status.  | 
		
Examples
Create endpoint example.
   from azure.ai.ml.entities import BatchEndpoint
   endpoint_example = BatchEndpoint(name=endpoint_name_2)
   ml_client.batch_endpoints.begin_create_or_update(endpoint_example)
begin_delete
Delete a batch Endpoint.
begin_delete(name: str) -> LROPoller[None]
		Parameters
| Name | Description | 
|---|---|
| 
		 name 
			
				Required
			 
	 | 
	
		
		 Name of the batch endpoint.  | 
Returns
| Type | Description | 
|---|---|
| 
					 A poller to track the operation status.  | 
		
Examples
Delete endpoint example.
   ml_client.batch_endpoints.begin_delete(endpoint_name)
get
Get a Endpoint resource.
get(name: str) -> BatchEndpoint
		Parameters
| Name | Description | 
|---|---|
| 
		 name 
			
				Required
			 
	 | 
	
		
		 Name of the endpoint.  | 
Returns
| Type | Description | 
|---|---|
| 
					 Endpoint object retrieved from the service.  | 
		
Examples
Get endpoint example.
   ml_client.batch_endpoints.get(endpoint_name)
invoke
Invokes the batch endpoint with the provided payload.
invoke(endpoint_name: str, *, deployment_name: str | None = None, inputs: Dict[str, Input] | None = None, **kwargs: Any) -> BatchJob
		Parameters
| Name | Description | 
|---|---|
| 
		 endpoint_name 
			
				Required
			 
	 | 
	
		
		 The endpoint name.  | 
Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 deployment_name 
	 | 
	
		
		 (Optional) The name of a specific deployment to invoke. This is optional. By default requests are routed to any of the deployments according to the traffic rules. Default value: None 
			 | 
| 
		 inputs 
	 | 
	
		
		 (Optional) A dictionary of existing data asset, public uri file or folder to use with the deployment Default value: None 
			 | 
Returns
| Type | Description | 
|---|---|
| 
					 The invoked batch deployment job.  | 
		
Exceptions
| Type | Description | 
|---|---|
| 
					 Raised if deployment cannot be successfully validated. Details will be provided in the error message.  | 
			|
| 
					 Raised if BatchEndpoint assets (e.g. Data, Code, Model, Environment) cannot be successfully validated. Details will be provided in the error message.  | 
			|
| 
					 Raised if BatchEndpoint model cannot be successfully validated. Details will be provided in the error message.  | 
			|
| 
					 Raised if local path provided points to an empty directory.  | 
			
Examples
Invoke endpoint example.
   ml_client.batch_endpoints.invoke(endpoint_name_2)
list
List endpoints of the workspace.
list() -> ItemPaged[BatchEndpoint]
Returns
| Type | Description | 
|---|---|
| 
					 A list of endpoints  | 
		
Examples
List example.
   ml_client.batch_endpoints.list()
list_jobs
List jobs under the provided batch endpoint deployment. This is only valid for batch endpoint.
list_jobs(endpoint_name: str) -> ItemPaged[BatchJob]
		Parameters
| Name | Description | 
|---|---|
| 
		 endpoint_name 
			
				Required
			 
	 | 
	
		
		 The endpoint name  | 
Returns
| Type | Description | 
|---|---|
| 
					 List of jobs  | 
		
Examples
List jobs example.
   ml_client.batch_endpoints.list_jobs(endpoint_name_2)