TextNerJob Class  
Configuration for AutoML Text NER Job.
Constructor
TextNerJob(*, training_data: Input | None = None, validation_data: Input | None = None, primary_metric: str | None = None, log_verbosity: str | None = None, **kwargs: Any)
		Parameters
| Name | Description | 
|---|---|
| 
		 training_data 
			
				Required
			 
	 | 
	
		
		 Training data to be used for training, defaults to None  | 
| 
		 validation_data 
			
				Required
			 
	 | 
	
		
		 Validation data to be used for evaluating the trained model, defaults to None  | 
| 
		 primary_metric 
			
				Required
			 
	 | 
	
		
		 The primary metric to be displayed, defaults to None  | 
| 
		 log_verbosity 
			
				Required
			 
	 | 
	
		
		 Log verbosity level, defaults to None  | 
Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 training_data 
	 | 
	
		 Default value: None 
			 | 
| 
		 validation_data 
	 | 
	
		 Default value: None 
			 | 
| 
		 primary_metric 
	 | 
	
		 Default value: None 
			 | 
| 
		 log_verbosity 
	 | 
	
		 Default value: None 
			 | 
Examples
creating an automl text ner job
   from azure.ai.ml import automl, Input
   from azure.ai.ml.constants import AssetTypes
   text_ner_job = automl.TextNerJob(
       experiment_name="my_experiment",
       compute="my_compute",
       training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
       validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
       tags={"my_custom_tag": "My custom value"},
   )
	Methods
| dump | 
					 Dumps the job content into a file in YAML format.  | 
			
| extend_search_space | 
					 Add (a) search space(s) for an AutoML NLP job.  | 
			
| set_data | 
					 Define data configuration for NLP job  | 
			
| set_featurization | 
					 Define featurization configuration for AutoML NLP job.  | 
			
| set_limits | 
					 Define limit configuration for AutoML NLP job  | 
			
| set_sweep | 
					 Define sweep configuration for AutoML NLP job  | 
			
| set_training_parameters | 
					 Fix certain training parameters throughout the training procedure for all candidates.  | 
			
dump
Dumps the job content into a file in YAML format.
dump(dest: str | PathLike | IO, **kwargs: Any) -> None
		Parameters
| Name | Description | 
|---|---|
| 
		 dest 
			
				Required
			 
	 | 
	
		
		 The local path or file stream to write the YAML content to. If dest is a file path, a new file will be created. If dest is an open file, the file will be written to directly.  | 
Exceptions
| Type | Description | 
|---|---|
| 
					 Raised if dest is a file path and the file already exists.  | 
			|
| 
					 Raised if dest is an open file and the file is not writable.  | 
			
extend_search_space
Add (a) search space(s) for an AutoML NLP job.
extend_search_space(value: SearchSpace | List[SearchSpace]) -> None
		Parameters
| Name | Description | 
|---|---|
| 
		 value 
			
				Required
			 
	 | 
	
		
		 either a SearchSpace object or a list of SearchSpace objects with nlp-specific parameters.  | 
set_data
Define data configuration for NLP job
set_data(*, training_data: Input, target_column_name: str, validation_data: Input) -> None
		Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 training_data 
	 | 
	
		 Training data  | 
| 
		 target_column_name 
	 | 
	
		 Column name of the target column.  | 
| 
		 validation_data 
	 | 
	
		 Validation data  | 
set_featurization
Define featurization configuration for AutoML NLP job.
set_featurization(*, dataset_language: str | None = None) -> None
		Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 dataset_language 
	 | 
	
		 Language of the dataset, defaults to None Default value: None 
			 | 
set_limits
Define limit configuration for AutoML NLP job
set_limits(*, max_trials: int = 1, max_concurrent_trials: int = 1, max_nodes: int = 1, timeout_minutes: int | None = None, trial_timeout_minutes: int | None = None) -> None
		Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 max_trials 
	 | 
	
		 Maximum number of AutoML iterations, defaults to 1 Default value: 1 
			 | 
| 
		 max_concurrent_trials 
	 | 
	
		 Maximum number of concurrent AutoML iterations, defaults to 1 Default value: 1 
			 | 
| 
		 max_nodes 
	 | 
	
		 Maximum number of nodes used for sweep, defaults to 1 Default value: 1 
			 | 
| 
		 timeout_minutes 
	 | 
	
		 Timeout for the AutoML job, defaults to None Default value: None 
			 | 
| 
		 trial_timeout_minutes 
	 | 
	
		 Timeout for each AutoML trial, defaults to None Default value: None 
			 | 
set_sweep
Define sweep configuration for AutoML NLP job
set_sweep(*, sampling_algorithm: str | SamplingAlgorithmType, early_termination: EarlyTerminationPolicy | None = None) -> None
		Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 sampling_algorithm 
	 | 
	
		 Required. Specifies type of hyperparameter sampling algorithm. Possible values include: "Grid", "Random", and "Bayesian".  | 
| 
		 early_termination 
	 | 
	
		 Optional. early termination policy to end poorly performing training candidates, defaults to None. Default value: None 
			 | 
set_training_parameters
Fix certain training parameters throughout the training procedure for all candidates.
set_training_parameters(*, gradient_accumulation_steps: int | None = None, learning_rate: float | None = None, learning_rate_scheduler: str | NlpLearningRateScheduler | None = None, model_name: str | None = None, number_of_epochs: int | None = None, training_batch_size: int | None = None, validation_batch_size: int | None = None, warmup_ratio: float | None = None, weight_decay: float | None = None) -> None
		Keyword-Only Parameters
| Name | Description | 
|---|---|
| 
		 gradient_accumulation_steps 
	 | 
	
		 number of steps over which to accumulate gradients before a backward pass. This must be a positive integer., defaults to None Default value: None 
			 | 
| 
		 learning_rate 
	 | 
	
		 initial learning rate. Must be a float in (0, 1)., defaults to None Default value: None 
			 | 
| 
		 learning_rate_scheduler 
	 | 
	
		 the type of learning rate scheduler. Must choose from 'linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', and 'constant_with_warmup'., defaults to None Default value: None 
			 | 
| 
		 model_name 
	 | 
	
		 the model name to use during training. Must choose from 'bert-base-cased', 'bert-base-uncased', 'bert-base-multilingual-cased', 'bert-base-german-cased', 'bert-large-cased', 'bert-large-uncased', 'distilbert-base-cased', 'distilbert-base-uncased', 'roberta-base', 'roberta-large', 'distilroberta-base', 'xlm-roberta-base', 'xlm-roberta-large', xlnet-base-cased', and 'xlnet-large-cased'., defaults to None Default value: None 
			 | 
| 
		 number_of_epochs 
	 | 
	
		 the number of epochs to train with. Must be a positive integer., defaults to None Default value: None 
			 | 
| 
		 training_batch_size 
	 | 
	
		 the batch size during training. Must be a positive integer., defaults to None Default value: None 
			 | 
| 
		 validation_batch_size 
	 | 
	
		 the batch size during validation. Must be a positive integer., defaults to None Default value: None 
			 | 
| 
		 warmup_ratio 
	 | 
	
		 ratio of total training steps used for a linear warmup from 0 to learning_rate. Must be a float in [0, 1]., defaults to None Default value: None 
			 | 
| 
		 weight_decay 
	 | 
	
		 value of weight decay when optimizer is sgd, adam, or adamw. This must be a float in the range [0, 1]., defaults to None Default value: None 
			 | 
Attributes
base_path
creation_context
The creation context of the resource.
Returns
| Type | Description | 
|---|---|
| 
					 The creation metadata for the resource.  | 
		
featurization
Featurization settings used for NLP job
Returns
| Type | Description | 
|---|---|
| 
					 featurization settings  | 
		
id
inputs
limits
Limit settings for NLP jobs
Returns
| Type | Description | 
|---|---|
| 
					 limit configuration for NLP job  | 
		
log_files
log_verbosity
Log verbosity configuration
Returns
| Type | Description | 
|---|---|
| 
					 the degree of verbosity used in logging  | 
		
outputs
primary_metric
search_space
Search space(s) to sweep over for NLP sweep jobs
Returns
| Type | Description | 
|---|---|
| 
					 list of search spaces to sweep over for NLP jobs  | 
		
status
The status of the job.
Common values returned include "Running", "Completed", and "Failed". All possible values are:
NotStarted - This is a temporary state that client-side Run objects are in before cloud submission.
Starting - The Run has started being processed in the cloud. The caller has a run ID at this point.
Provisioning - On-demand compute is being created for a given job submission.
Preparing - The run environment is being prepared and is in one of two stages:
Docker image build
conda environment setup
Queued - The job is queued on the compute target. For example, in BatchAI, the job is in a queued state
while waiting for all the requested nodes to be ready.
Running - The job has started to run on the compute target.
Finalizing - User code execution has completed, and the run is in post-processing stages.
CancelRequested - Cancellation has been requested for the job.
Completed - The run has completed successfully. This includes both the user code execution and run
post-processing stages.
Failed - The run failed. Usually the Error property on a run will provide details as to why.
Canceled - Follows a cancellation request and indicates that the run is now successfully cancelled.
NotResponding - For runs that have Heartbeats enabled, no heartbeat has been recently sent.
Returns
| Type | Description | 
|---|---|
| 
					 Status of the job.  | 
		
studio_url
sweep
task_type
Get task type.
Returns
| Type | Description | 
|---|---|
| 
					 The type of task to run. Possible values include: "classification", "regression", "forecasting".  | 
		
test_data
training_data
training_parameters
Parameters that are used for all submitted jobs.
Returns
| Type | Description | 
|---|---|
| 
					 fixed training parameters for NLP jobs  |