Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Kernels supported for use in computing inner products.
Usage
  linearKernel(...)
  polynomialKernel(a = NULL, bias = 0, deg = 3, ...)
  rbfKernel(gamma = NULL, ...)
  sigmoidKernel(gamma = NULL, coef0 = 0, ...)
Arguments
a
The numeric value for a in the term (a*<x,y> + b)^d. If not specified, (1/(number of features) is used.
bias
The numeric value for b in the term (a*<x,y> + b)^d.
deg
The integer value for d in the term (a*<x,y> + b)^d.
gamma
The numeric value for gamma in the expression tanh(gamma*<x,y> + c). If not specified, 1/(number of features) is used.
coef0
The numeric value for c in the expression tanh(gamma*<x,y> + c).
 ...
Additional arguments passed to the Microsoft ML compute engine.
Details
These helper functions specify the kernel that is used for training in relevant algorithms. The kernels that are supported:
linearKernel: linear kernel.
rbfKernel: radial basis function kernel.
polynomialKernel: polynomial kernel.
sigmoidKernel: sigmoid kernel.
Value
A character string defining the kernel.
Author(s)
Microsoft Corporation Microsoft Technical Support
References
  Estimating the Support of a High-Dimensional Distribution
See also
Examples
 # Simulate some simple data
 set.seed(7)
 numRows <- 200
 normalData <- data.frame(day = 1:numRows)
 normalData$pageViews = runif(numRows, min = 10, max = 1000) + .5 * normalData$day
 testData <- data.frame(day = 1:numRows)
 # The test data has outliers above 1000
 testData$pageViews = runif(numRows, min = 10, max = 1400) + .5 * testData$day
 train <- function(kernelFunction, args=NULL) {
     model <- rxOneClassSvm(formula = ~pageViews + day, data = normalData,
     kernel = kernelFunction(args))
     scores <- rxPredict(model, data = testData, writeModelVars = TRUE)
     scores$groups = scores$Score > 0
     scores
 }
 display <- function(scores) {
     print(sum(scores$groups))
     rxLinePlot(pageViews ~ day, data = scores, groups = groups, type = "p",
      symbolColors = c("red", "blue"))
 }
 scores <- list()
 scores$rbfKernel <- train(rbfKernel)
 scores$linearKernel <- train(linearKernel)
 scores$polynomialKernel <- train(polynomialKernel, (a = .2))
 scores$sigmoidKernel <- train(sigmoidKernel)
 display(scores$rbfKernel)
 display(scores$linearKernel)
 display(scores$polynomialKernel)
 display(scores$sigmoidKernel)