ResourceConfiguration Class 
Defines the details for the resource configuration of Azure Machine Learning resources.
Initialize the ResourceConfiguration.
Constructor
ResourceConfiguration(cpu=None, memory_in_gb=None, gpu=None)Parameters
| Name | Description | 
|---|---|
| cpu | The number of CPU cores to allocate for this resource. Can be a decimal. Default value: None | 
| memory_in_gb | The amount of memory (in GB) to allocate for this resource. Can be a decimal. Default value: None | 
| gpu | The number of GPUs to allocate for this resource. Default value: None | 
| cpu 
				Required
			 | The number of CPU cores to allocate for this resource. Can be a decimal. | 
| memory_in_gb 
				Required
			 | The amount of memory (in GB) to allocate for this resource. Can be a decimal. | 
| gpu 
				Required
			 | The number of GPUs to allocate for this resource. | 
Remarks
Initialize a resource configuration with this class. For example, the following code shows how to register a model specifying framework, input and output datasets, and resource configuration.
   import sklearn
   from azureml.core import Model
   from azureml.core.resource_configuration import ResourceConfiguration
   model = Model.register(workspace=ws,
                          model_name='my-sklearn-model',                # Name of the registered model in your workspace.
                          model_path='./sklearn_regression_model.pkl',  # Local file to upload and register as a model.
                          model_framework=Model.Framework.SCIKITLEARN,  # Framework used to create the model.
                          model_framework_version=sklearn.__version__,  # Version of scikit-learn used to create the model.
                          sample_input_dataset=input_dataset,
                          sample_output_dataset=output_dataset,
                          resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),
                          description='Ridge regression model to predict diabetes progression.',
                          tags={'area': 'diabetes', 'type': 'regression'})
   print('Name:', model.name)
   print('Version:', model.version)
Methods
| deserialize | Convert a JSON object into a ResourceConfiguration object. | 
| serialize | Convert this ResourceConfiguration into a JSON serialized dictionary. | 
deserialize
Convert a JSON object into a ResourceConfiguration object.
static deserialize(payload_obj)Parameters
| Name | Description | 
|---|---|
| payload_obj 
				Required
			 | A JSON object to convert to a ResourceConfiguration object. | 
Returns
| Type | Description | 
|---|---|
| The ResourceConfiguration representation of the provided JSON object. | 
serialize
Convert this ResourceConfiguration into a JSON serialized dictionary.
serialize()Returns
| Type | Description | 
|---|---|
| The JSON representation of this ResourceConfiguration. |