TextNerJob Class  
Configuration for AutoML Text NER Job.
Constructor
TextNerJob(*, training_data: Input | None = None, validation_data: Input | None = None, primary_metric: str | None = None, log_verbosity: str | None = None, **kwargs: Any)Parameters
| Name | Description | 
|---|---|
| training_data 
				Required
			 | Training data to be used for training, defaults to None | 
| validation_data 
				Required
			 | Validation data to be used for evaluating the trained model, defaults to None | 
| primary_metric 
				Required
			 | The primary metric to be displayed, defaults to None | 
| log_verbosity 
				Required
			 | Log verbosity level, defaults to None | 
Keyword-Only Parameters
| Name | Description | 
|---|---|
| training_data | Default value: None | 
| validation_data | Default value: None | 
| primary_metric | Default value: None | 
| log_verbosity | Default value: None | 
Examples
creating an automl text ner job
   from azure.ai.ml import automl, Input
   from azure.ai.ml.constants import AssetTypes
   text_ner_job = automl.TextNerJob(
       experiment_name="my_experiment",
       compute="my_compute",
       training_data=Input(type=AssetTypes.MLTABLE, path="./training-mltable-folder"),
       validation_data=Input(type=AssetTypes.MLTABLE, path="./validation-mltable-folder"),
       tags={"my_custom_tag": "My custom value"},
   )
Methods
| dump | Dumps the job content into a file in YAML format. | 
| extend_search_space | Add (a) search space(s) for an AutoML NLP job. | 
| set_data | Define data configuration for NLP job | 
| set_featurization | Define featurization configuration for AutoML NLP job. | 
| set_limits | Define limit configuration for AutoML NLP job | 
| set_sweep | Define sweep configuration for AutoML NLP job | 
| set_training_parameters | Fix certain training parameters throughout the training procedure for all candidates. | 
dump
Dumps the job content into a file in YAML format.
dump(dest: str | PathLike | IO, **kwargs: Any) -> NoneParameters
| Name | Description | 
|---|---|
| dest 
				Required
			 | The local path or file stream to write the YAML content to. If dest is a file path, a new file will be created. If dest is an open file, the file will be written to directly. | 
Exceptions
| Type | Description | 
|---|---|
| Raised if dest is a file path and the file already exists. | |
| Raised if dest is an open file and the file is not writable. | 
extend_search_space
Add (a) search space(s) for an AutoML NLP job.
extend_search_space(value: SearchSpace | List[SearchSpace]) -> NoneParameters
| Name | Description | 
|---|---|
| value 
				Required
			 | either a SearchSpace object or a list of SearchSpace objects with nlp-specific parameters. | 
set_data
Define data configuration for NLP job
set_data(*, training_data: Input, target_column_name: str, validation_data: Input) -> NoneKeyword-Only Parameters
| Name | Description | 
|---|---|
| training_data | Training data | 
| target_column_name | Column name of the target column. | 
| validation_data | Validation data | 
set_featurization
Define featurization configuration for AutoML NLP job.
set_featurization(*, dataset_language: str | None = None) -> NoneKeyword-Only Parameters
| Name | Description | 
|---|---|
| dataset_language | Language of the dataset, defaults to None Default value: None | 
set_limits
Define limit configuration for AutoML NLP job
set_limits(*, max_trials: int = 1, max_concurrent_trials: int = 1, max_nodes: int = 1, timeout_minutes: int | None = None, trial_timeout_minutes: int | None = None) -> NoneKeyword-Only Parameters
| Name | Description | 
|---|---|
| max_trials | Maximum number of AutoML iterations, defaults to 1 Default value: 1 | 
| max_concurrent_trials | Maximum number of concurrent AutoML iterations, defaults to 1 Default value: 1 | 
| max_nodes | Maximum number of nodes used for sweep, defaults to 1 Default value: 1 | 
| timeout_minutes | Timeout for the AutoML job, defaults to None Default value: None | 
| trial_timeout_minutes | Timeout for each AutoML trial, defaults to None Default value: None | 
set_sweep
Define sweep configuration for AutoML NLP job
set_sweep(*, sampling_algorithm: str | SamplingAlgorithmType, early_termination: EarlyTerminationPolicy | None = None) -> NoneKeyword-Only Parameters
| Name | Description | 
|---|---|
| sampling_algorithm | Required. Specifies type of hyperparameter sampling algorithm. Possible values include: "Grid", "Random", and "Bayesian". | 
| early_termination | Optional. early termination policy to end poorly performing training candidates, defaults to None. Default value: None | 
set_training_parameters
Fix certain training parameters throughout the training procedure for all candidates.
set_training_parameters(*, gradient_accumulation_steps: int | None = None, learning_rate: float | None = None, learning_rate_scheduler: str | NlpLearningRateScheduler | None = None, model_name: str | None = None, number_of_epochs: int | None = None, training_batch_size: int | None = None, validation_batch_size: int | None = None, warmup_ratio: float | None = None, weight_decay: float | None = None) -> NoneKeyword-Only Parameters
| Name | Description | 
|---|---|
| gradient_accumulation_steps | number of steps over which to accumulate gradients before a backward pass. This must be a positive integer., defaults to None Default value: None | 
| learning_rate | initial learning rate. Must be a float in (0, 1)., defaults to None Default value: None | 
| learning_rate_scheduler | the type of learning rate scheduler. Must choose from 'linear', 'cosine', 'cosine_with_restarts', 'polynomial', 'constant', and 'constant_with_warmup'., defaults to None Default value: None | 
| model_name | the model name to use during training. Must choose from 'bert-base-cased', 'bert-base-uncased', 'bert-base-multilingual-cased', 'bert-base-german-cased', 'bert-large-cased', 'bert-large-uncased', 'distilbert-base-cased', 'distilbert-base-uncased', 'roberta-base', 'roberta-large', 'distilroberta-base', 'xlm-roberta-base', 'xlm-roberta-large', xlnet-base-cased', and 'xlnet-large-cased'., defaults to None Default value: None | 
| number_of_epochs | the number of epochs to train with. Must be a positive integer., defaults to None Default value: None | 
| training_batch_size | the batch size during training. Must be a positive integer., defaults to None Default value: None | 
| validation_batch_size | the batch size during validation. Must be a positive integer., defaults to None Default value: None | 
| warmup_ratio | ratio of total training steps used for a linear warmup from 0 to learning_rate. Must be a float in [0, 1]., defaults to None Default value: None | 
| weight_decay | value of weight decay when optimizer is sgd, adam, or adamw. This must be a float in the range [0, 1]., defaults to None Default value: None | 
Attributes
base_path
creation_context
The creation context of the resource.
Returns
| Type | Description | 
|---|---|
| The creation metadata for the resource. | 
featurization
Featurization settings used for NLP job
Returns
| Type | Description | 
|---|---|
| featurization settings | 
id
inputs
limits
Limit settings for NLP jobs
Returns
| Type | Description | 
|---|---|
| limit configuration for NLP job | 
log_files
log_verbosity
Log verbosity configuration
Returns
| Type | Description | 
|---|---|
| the degree of verbosity used in logging | 
outputs
primary_metric
search_space
Search space(s) to sweep over for NLP sweep jobs
Returns
| Type | Description | 
|---|---|
| list of search spaces to sweep over for NLP jobs | 
status
The status of the job.
Common values returned include "Running", "Completed", and "Failed". All possible values are:
- NotStarted - This is a temporary state that client-side Run objects are in before cloud submission. 
- Starting - The Run has started being processed in the cloud. The caller has a run ID at this point. 
- Provisioning - On-demand compute is being created for a given job submission. 
- Preparing - The run environment is being prepared and is in one of two stages: - Docker image build 
- conda environment setup 
 
- Queued - The job is queued on the compute target. For example, in BatchAI, the job is in a queued state - while waiting for all the requested nodes to be ready. 
- Running - The job has started to run on the compute target. 
- Finalizing - User code execution has completed, and the run is in post-processing stages. 
- CancelRequested - Cancellation has been requested for the job. 
- Completed - The run has completed successfully. This includes both the user code execution and run - post-processing stages. 
- Failed - The run failed. Usually the Error property on a run will provide details as to why. 
- Canceled - Follows a cancellation request and indicates that the run is now successfully cancelled. 
- NotResponding - For runs that have Heartbeats enabled, no heartbeat has been recently sent. 
Returns
| Type | Description | 
|---|---|
| Status of the job. | 
studio_url
sweep
task_type
Get task type.
Returns
| Type | Description | 
|---|---|
| The type of task to run. Possible values include: "classification", "regression", "forecasting". | 
test_data
training_data
training_parameters
Parameters that are used for all submitted jobs.
Returns
| Type | Description | 
|---|---|
| fixed training parameters for NLP jobs |