ImageClassificationSearchSpace Class   
Search space for AutoML Image Classification and Image Classification Multilabel tasks.
Constructor
ImageClassificationSearchSpace(*, ams_gradient: bool | SweepDistribution | None = None, beta1: float | SweepDistribution | None = None, beta2: float | SweepDistribution | None = None, distributed: bool | SweepDistribution | None = None, early_stopping: bool | SweepDistribution | None = None, early_stopping_delay: int | SweepDistribution | None = None, early_stopping_patience: int | SweepDistribution | None = None, enable_onnx_normalization: bool | SweepDistribution | None = None, evaluation_frequency: int | SweepDistribution | None = None, gradient_accumulation_step: int | SweepDistribution | None = None, layers_to_freeze: int | SweepDistribution | None = None, learning_rate: float | SweepDistribution | None = None, learning_rate_scheduler: str | SweepDistribution | None = None, model_name: str | SweepDistribution | None = None, momentum: float | SweepDistribution | None = None, nesterov: bool | SweepDistribution | None = None, number_of_epochs: int | SweepDistribution | None = None, number_of_workers: int | SweepDistribution | None = None, optimizer: str | SweepDistribution | None = None, random_seed: int | SweepDistribution | None = None, step_lr_gamma: float | SweepDistribution | None = None, step_lr_step_size: int | SweepDistribution | None = None, training_batch_size: int | SweepDistribution | None = None, validation_batch_size: int | SweepDistribution | None = None, warmup_cosine_lr_cycles: float | SweepDistribution | None = None, warmup_cosine_lr_warmup_epochs: int | SweepDistribution | None = None, weight_decay: float | SweepDistribution | None = None, training_crop_size: int | SweepDistribution | None = None, validation_crop_size: int | SweepDistribution | None = None, validation_resize_size: int | SweepDistribution | None = None, weighted_loss: int | SweepDistribution | None = None)Parameters
| Name | Description | 
|---|---|
| ams_gradient 
				Required
			 | 
				bool or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Enable AMSGrad when optimizer is 'adam' or 'adamw'. | 
| beta1 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | 
| beta2 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. | 
| distributed 
				Required
			 | 
				bool or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Whether to use distributer training. | 
| early_stopping 
				Required
			 | 
				bool or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Enable early stopping logic during training. | 
| early_stopping_delay 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer. | 
| early_stopping_patience 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer. | 
| enable_onnx_normalization 
				Required
			 | 
				bool or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Enable normalization when exporting ONNX model. | 
| evaluation_frequency 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. | 
| gradient_accumulation_step 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer. | 
| layers_to_freeze 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://free.blessedness.top/azure/machine-learning/reference-automl-images-hyperparameters#model-agnostic-hyperparameters. # pylint: disable=line-too-long | 
| learning_rate 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Initial learning rate. Must be a float in the range [0, 1]. | 
| learning_rate_scheduler 
				Required
			 | 
				str or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. | 
| model_name 
				Required
			 | 
				str or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Name of the model to use for training. For more information on the available models please visit the official documentation: https://free.blessedness.top/azure/machine-learning/how-to-auto-train-image-models. | 
| momentum 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. | 
| nesterov 
				Required
			 | 
				bool or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Enable nesterov when optimizer is 'sgd'. | 
| number_of_epochs 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Number of training epochs. Must be a positive integer. | 
| number_of_workers 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Number of data loader workers. Must be a non-negative integer. | 
| optimizer 
				Required
			 | 
				str or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. | 
| random_seed 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Random seed to be used when using deterministic training. | 
| step_lr_gamma 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. | 
| step_lr_step_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of step size when learning rate scheduler is 'step'. Must be a positive integer. | 
| training_batch_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Training batch size. Must be a positive integer. | 
| validation_batch_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Validation batch size. Must be a positive integer. | 
| warmup_cosine_lr_cycles 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. | 
| warmup_cosine_lr_warmup_epochs 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. | 
| weight_decay 
				Required
			 | 
				float or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. | 
| training_crop_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Image crop size that is input to the neural network for the training dataset. Must be a positive integer. | 
| validation_crop_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. | 
| validation_resize_size 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Image size to which to resize before cropping for validation dataset. Must be a positive integer. | 
| weighted_loss 
				Required
			 | 
				int or 
				<xref:azure.ai.ml.entities._job.sweep.search_space.SweepDistribution>
		 Weighted loss. The accepted values are 0 for no weighted loss. 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2. | 
Keyword-Only Parameters
| Name | Description | 
|---|---|
| ams_gradient | Default value: None | 
| beta1 | Default value: None | 
| beta2 | Default value: None | 
| distributed | Default value: None | 
| early_stopping | Default value: None | 
| early_stopping_delay | Default value: None | 
| early_stopping_patience | Default value: None | 
| enable_onnx_normalization | Default value: None | 
| evaluation_frequency | Default value: None | 
| gradient_accumulation_step | Default value: None | 
| layers_to_freeze | Default value: None | 
| learning_rate | Default value: None | 
| learning_rate_scheduler | Default value: None | 
| model_name | Default value: None | 
| momentum | Default value: None | 
| nesterov | Default value: None | 
| number_of_epochs | Default value: None | 
| number_of_workers | Default value: None | 
| optimizer | Default value: None | 
| random_seed | Default value: None | 
| step_lr_gamma | Default value: None | 
| step_lr_step_size | Default value: None | 
| training_batch_size | Default value: None | 
| validation_batch_size | Default value: None | 
| warmup_cosine_lr_cycles | Default value: None | 
| warmup_cosine_lr_warmup_epochs | Default value: None | 
| weight_decay | Default value: None | 
| training_crop_size | Default value: None | 
| validation_crop_size | Default value: None | 
| validation_resize_size | Default value: None | 
| weighted_loss | Default value: None | 
Examples
Defining an automl image classification search space
   from azure.ai.ml import automl
   from azure.ai.ml.sweep import Uniform, Choice
   image_classification_search_space = automl.ImageClassificationSearchSpace(
       model_name="vitb16r224",
       number_of_epochs=Choice([15, 30]),
       weight_decay=Uniform(0.01, 0.1),
   )