Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Applies to:
Databricks SQL
Databricks Runtime
Returns a struct value with the jsonStr and schema.
Syntax
from_json(jsonStr, schema [, options])
Arguments
jsonStr: ASTRINGexpression specifying a json document.schema: ASTRINGexpression or invocation ofschema_of_jsonfunction.options: An optionalMAP<STRING,STRING>literal specifying directives.
jsonStr should be well-formed with respect to schema and options.
The schema must be defined as comma-separated column names and data type pairs, similar to the format used in CREATE TABLE. Prior to Databricks Runtime 12.2 schema must be a literal.
Alternatively, you can use from_json with Lakeflow Declarative Pipelines to automatically infer and evolve the schema by setting schema to NULL and specifying a schemaLocationKey. For examples, see Infer and evolve the schema using from_json in Lakeflow Declarative Pipelines.
Note
The column and field names in schema are case-sensitive and must match the names in jsonStr exactly.
To map JSON fields which differ only in case, you can cast the resulting struct to distinct field names.
See Examples for more details.
options, if provided, can be any of the following:
primitivesAsString(defaultfalse): infers all primitive values as a string type.prefersDecimal(defaultfalse): infers all floating-point values as a decimal type. If the values do not fit in decimal, then it infers them as doubles.allowComments(defaultfalse): ignores Java and C++ style comment in JSON records.allowUnquotedFieldNames(defaultfalse): allows unquoted JSON field names.allowSingleQuotes(defaulttrue): allows single quotes in addition to double quotes.allowNumericLeadingZeros(defaultfalse): allows leading zeros in numbers (for example,00012).allowBackslashEscapingAnyCharacter(defaultfalse): allows accepting quoting of all character using backslash quoting mechanism.allowUnquotedControlChars(defaultfalse): allows JSON Strings to contain unquoted control characters (ASCII characters with value less than 32, including tab and line feed characters) or not.mode(defaultPERMISSIVE): allows a mode for dealing with corrupt records during parsing.PERMISSIVE: when it meets a corrupted record, puts the malformed string into a field configured bycolumnNameOfCorruptRecord, and sets malformed fields to null. To keep corrupt records, you can set a string type field namedcolumnNameOfCorruptRecordin an user-defined schema. If a schema does not have the field, it drops corrupt records during parsing. When inferring a schema, it implicitly adds acolumnNameOfCorruptRecordfield in an output schema.FAILFAST: throws an exception when it meets corrupted records.
columnNameOfCorruptRecord(default is the value specified inspark.sql.columnNameOfCorruptRecord): allows renaming the new field having malformed string created byPERMISSIVEmode. This overridesspark.sql.columnNameOfCorruptRecord.dateFormat(defaultyyyy-MM-dd): sets the string that indicates a date format. Custom date formats follow the formats at Datetime patterns. This applies to date type.timestampFormat(defaultyyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]): sets the string that indicates a timestamp format. Custom date formats follow the formats at Datetime patterns. This applies to timestamp type.multiLine(defaultfalse): parses one record, which may span multiple lines, per file.encoding(by default it is not set): allows to forcibly set one of standard basic or extended encoding for the JSON files. For example UTF-16BE, UTF-32LE. If the encoding is not specified andmultiLineis set totrue, it is detected automatically.lineSep(default covers all\r,\r\nand\n): defines the line separator that should be used for parsing.samplingRatio(default 1.0): defines fraction of input JSON objects used for schema inferring.dropFieldIfAllNull(defaultfalse): whether to ignore column of all null values or empty array/struct during schema inference.locale(default isen-US):setsa locale as language tag in IETF BCP 47 format. For instance, this is used while parsing dates and timestamps.allowNonNumericNumbers(defaulttrue): allows JSON parser to recognize set of not-a-number (NaN) tokens as legal floating number values:+INFfor positive infinity, as well as alias of+InfinityandInfinity.-INFfor negative infinity), alias-Infinity.NaNfor other not-a-numbers, like result of division by zero.
readerCaseSensitive(defaulttrue): specifies the case sensitivity behavior whenrescuedDataColumnis enabled. If true, rescue the data columns whose names differ by case from the schema; otherwise, read the data in a case-insensitive manner. Available in Databricks SQL and Databricks Runtime 13.3 LTS and above.
Returns
A struct with field names and types matching the schema definition.
Examples
> SELECT from_json('{"a":1, "b":0.8}', 'a INT, b DOUBLE');
{"a":1,"b":0.8}
-- The column name must to match the case of the JSON field
> SELECT from_json('{"a":1}', 'A INT');
{"A":null}
> SELECT from_json('{"datetime":"26/08/2015"}', 'datetime Timestamp', map('timestampFormat', 'dd/MM/yyyy'));
{"datetime":2015-08-26 00:00:00}
-- Disambiguate field names with different cases
> SELECT cast(from_json('{"a":1, "A":0.8}', 'a INT, A DOUBLE') AS STRUCT<a: INT, b: DOUBLE>);
{"a":1, "b":0.8}