Unable to create vector index manually
Hari Krishna, Gudditi
0
Reputation points
Hi team,
I am trying to create a vector index manually creating index, skillset and indexer by json. But I am endedup in getting empty output. I am using a csv file as data source. Please verify below json and help me to find and fix the issue.
Below is the output I am getting:-
{
"@odata.context": "https://somename.search.windows.net/indexes('ritm-index')/$metadata#docs(*)",
"@odata.count": 0,
"value": []
}
Index:-
{
"@odata.etag": "\"0x8DE12CDD7065E6F\"",
"name": "ritm-index",
"fields": [
{
"name": "id",
"type": "Edm.String",
"searchable": false,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": true,
"synonymMaps": []
},
{
"name": "text_vector",
"type": "Collection(Edm.Single)",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"dimensions": 1536,
"vectorSearchProfile": "vector-profile-1761289758044",
"synonymMaps": []
},
{
"name": "number",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "active",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "createdBy",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "description",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "comments",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "closedBy",
"type": "Edm.String",
"searchable": true,
"filterable": false,
"retrievable": true,
"stored": true,
"sortable": false,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
},
{
"name": "mergedText",
"type": "Edm.String",
"searchable": true,
"filterable": true,
"retrievable": true,
"stored": true,
"sortable": true,
"facetable": false,
"key": false,
"analyzer": "standard.lucene",
"synonymMaps": []
}
],
"scoringProfiles": [],
"suggesters": [],
"analyzers": [],
"normalizers": [],
"tokenizers": [],
"tokenFilters": [],
"charFilters": [],
"similarity": {
"@odata.type": "#Microsoft.Azure.Search.BM25Similarity"
},
"vectorSearch": {
"algorithms": [
{
"name": "vector-config-1761289760260",
"kind": "hnsw",
"hnswParameters": {
"metric": "cosine",
"m": 4,
"efConstruction": 400,
"efSearch": 500
}
}
],
"profiles": [
{
"name": "vector-profile-1761289758044",
"algorithm": "vector-config-1761289760260",
"vectorizer": "vectorizer-1761289808681"
}
],
"vectorizers": [
{
"name": "vectorizer-1761289808681",
"kind": "azureOpenAI",
"azureOpenAIParameters": {
"resourceUri": "https://somename.openai.azure.com",
"deploymentId": "text-embedding-ada-002",
"apiKey": "<redacted>",
"modelName": "text-embedding-ada-002"
}
}
],
"compressions": []
}
}
SkillSet:-
{
"@odata.etag": "\"0x8DE12CDF027244A\"",
"name": "ritm-skillset",
"description": "Merge multiple fields into a single merged text and generate embeddings for vector search",
"skills": [
{
"@odata.type": "#Microsoft.Skills.Util.ShaperSkill",
"name": "shaper-merge-fields",
"description": "Combine fields into a single merged text",
"context": "/document",
"inputs": [
{
"name": "number",
"source": "/document/number",
"inputs": []
},
{
"name": "createdBy",
"source": "/document/createdBy",
"inputs": []
},
{
"name": "description",
"source": "/document/description",
"inputs": []
},
{
"name": "comments",
"source": "/document/comments",
"inputs": []
},
{
"name": "closedBy",
"source": "/document/closedBy",
"inputs": []
}
],
"outputs": [
{
"name": "output",
"targetName": "mergedText"
}
]
},
{
"@odata.type": "#Microsoft.Skills.Text.AzureOpenAIEmbeddingSkill",
"name": "#2",
"context": "/document",
"resourceUri": "https://somename.openai.azure.com",
"apiKey": "<redacted>",
"deploymentId": "text-embedding-ada-002",
"dimensions": 1536,
"modelName": "text-embedding-ada-002",
"inputs": [
{
"name": "text",
"source": "/document/mergedText",
"inputs": []
}
],
"outputs": [
{
"name": "embedding",
"targetName": "text_vector"
}
]
}
]
}
Indexer :-
{
"@odata.context": "https://somename.search.windows.net/$metadata#indexers/$entity",
"@odata.etag": "\"0x8DE12CE03BB9B6C\"",
"name": "ritm-indexer",
"description": "Indexer to load data, merge text fields, and generate embeddings for vector search",
"dataSourceName": "ritms",
"skillsetName": "ritm-skillset",
"targetIndexName": "ritm-index",
"disabled": null,
"schedule": null,
"parameters": {
"batchSize": null,
"maxFailedItems": null,
"maxFailedItemsPerBatch": null,
"configuration": {
"parsingMode": "delimitedText",
"firstLineContainsHeaders": true,
"delimitedTextDelimiter": ","
}
},
"fieldMappings": [
{
"sourceFieldName": "number",
"targetFieldName": "number",
"mappingFunction": null
},
{
"sourceFieldName": "description",
"targetFieldName": "description",
"mappingFunction": null
},
{
"sourceFieldName": "comments",
"targetFieldName": "comments",
"mappingFunction": null
},
{
"sourceFieldName": "createdBy",
"targetFieldName": "createdBy",
"mappingFunction": null
},
{
"sourceFieldName": "closedBy",
"targetFieldName": "closedBy",
"mappingFunction": null
},
{
"sourceFieldName": "active",
"targetFieldName": "active",
"mappingFunction": null
}
],
"outputFieldMappings": [
{
"sourceFieldName": "/document/mergedText",
"targetFieldName": "mergedText",
"mappingFunction": null
},
{
"sourceFieldName": "/document/text_vector",
"targetFieldName": "text_vector",
"mappingFunction": null
}
],
"cache": null,
"encryptionKey": null
}
the vector index quota usage size is also 0. Issue is with the vector, but I am unable to find or fix this. Please help me to fix this.
My requirement is, I need my mergedText to have all the data of fields and it must be vectorized.
Azure AI Search
Azure AI Search
An Azure search service with built-in artificial intelligence capabilities that enrich information to help identify and explore relevant content at scale.
Sign in to answer