Unable to create vector index manually

Hari Krishna, Gudditi 0 Reputation points
2025-10-24T07:42:50.4533333+00:00

Hi team,

I am trying to create a vector index manually creating index, skillset and indexer by json. But I am endedup in getting empty output. I am using a csv file as data source. Please verify below json and help me to find and fix the issue.

Below is the output I am getting:-


{
  "@odata.context": "https://somename.search.windows.net/indexes('ritm-index')/$metadata#docs(*)",
  "@odata.count": 0,
  "value": []
}

Index:-


{
  "@odata.etag": "\"0x8DE12CDD7065E6F\"",
  "name": "ritm-index",
  "fields": [
    {
      "name": "id",
      "type": "Edm.String",
      "searchable": false,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": true,
      "synonymMaps": []
    },
    {
      "name": "text_vector",
      "type": "Collection(Edm.Single)",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "dimensions": 1536,
      "vectorSearchProfile": "vector-profile-1761289758044",
      "synonymMaps": []
    },
    {
      "name": "number",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "active",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "createdBy",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "description",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "comments",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "closedBy",
      "type": "Edm.String",
      "searchable": true,
      "filterable": false,
      "retrievable": true,
      "stored": true,
      "sortable": false,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    },
    {
      "name": "mergedText",
      "type": "Edm.String",
      "searchable": true,
      "filterable": true,
      "retrievable": true,
      "stored": true,
      "sortable": true,
      "facetable": false,
      "key": false,
      "analyzer": "standard.lucene",
      "synonymMaps": []
    }
  ],
  "scoringProfiles": [],
  "suggesters": [],
  "analyzers": [],
  "normalizers": [],
  "tokenizers": [],
  "tokenFilters": [],
  "charFilters": [],
  "similarity": {
    "@odata.type": "#Microsoft.Azure.Search.BM25Similarity"
  },
  "vectorSearch": {
    "algorithms": [
      {
        "name": "vector-config-1761289760260",
        "kind": "hnsw",
        "hnswParameters": {
          "metric": "cosine",
          "m": 4,
          "efConstruction": 400,
          "efSearch": 500
        }
      }
    ],
    "profiles": [
      {
        "name": "vector-profile-1761289758044",
        "algorithm": "vector-config-1761289760260",
        "vectorizer": "vectorizer-1761289808681"
      }
    ],
    "vectorizers": [
      {
        "name": "vectorizer-1761289808681",
        "kind": "azureOpenAI",
        "azureOpenAIParameters": {
          "resourceUri": "https://somename.openai.azure.com",
          "deploymentId": "text-embedding-ada-002",
          "apiKey": "<redacted>",
          "modelName": "text-embedding-ada-002"
        }
      }
    ],
    "compressions": []
  }
}


SkillSet:-


{
  "@odata.etag": "\"0x8DE12CDF027244A\"",
  "name": "ritm-skillset",
  "description": "Merge multiple fields into a single merged text and generate embeddings for vector search",
  "skills": [
    {
      "@odata.type": "#Microsoft.Skills.Util.ShaperSkill",
      "name": "shaper-merge-fields",
      "description": "Combine fields into a single merged text",
      "context": "/document",
      "inputs": [
        {
          "name": "number",
          "source": "/document/number",
          "inputs": []
        },
        {
          "name": "createdBy",
          "source": "/document/createdBy",
          "inputs": []
        },
        {
          "name": "description",
          "source": "/document/description",
          "inputs": []
        },
        {
          "name": "comments",
          "source": "/document/comments",
          "inputs": []
        },
        {
          "name": "closedBy",
          "source": "/document/closedBy",
          "inputs": []
        }
      ],
      "outputs": [
        {
          "name": "output",
          "targetName": "mergedText"
        }
      ]
    },
    {
      "@odata.type": "#Microsoft.Skills.Text.AzureOpenAIEmbeddingSkill",
      "name": "#2",
      "context": "/document",
      "resourceUri": "https://somename.openai.azure.com",
      "apiKey": "<redacted>",
      "deploymentId": "text-embedding-ada-002",
      "dimensions": 1536,
      "modelName": "text-embedding-ada-002",
      "inputs": [
        {
          "name": "text",
          "source": "/document/mergedText",
          "inputs": []
        }
      ],
      "outputs": [
        {
          "name": "embedding",
          "targetName": "text_vector"
        }
      ]
    }
  ]
}


Indexer :-


{
  "@odata.context": "https://somename.search.windows.net/$metadata#indexers/$entity",
  "@odata.etag": "\"0x8DE12CE03BB9B6C\"",
  "name": "ritm-indexer",
  "description": "Indexer to load data, merge text fields, and generate embeddings for vector search",
  "dataSourceName": "ritms",
  "skillsetName": "ritm-skillset",
  "targetIndexName": "ritm-index",
  "disabled": null,
  "schedule": null,
  "parameters": {
    "batchSize": null,
    "maxFailedItems": null,
    "maxFailedItemsPerBatch": null,
    "configuration": {
      "parsingMode": "delimitedText",
      "firstLineContainsHeaders": true,
      "delimitedTextDelimiter": ","
    }
  },
  "fieldMappings": [
    {
      "sourceFieldName": "number",
      "targetFieldName": "number",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "description",
      "targetFieldName": "description",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "comments",
      "targetFieldName": "comments",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "createdBy",
      "targetFieldName": "createdBy",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "closedBy",
      "targetFieldName": "closedBy",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "active",
      "targetFieldName": "active",
      "mappingFunction": null
    }
  ],
  "outputFieldMappings": [
    {
      "sourceFieldName": "/document/mergedText",
      "targetFieldName": "mergedText",
      "mappingFunction": null
    },
    {
      "sourceFieldName": "/document/text_vector",
      "targetFieldName": "text_vector",
      "mappingFunction": null
    }
  ],
  "cache": null,
  "encryptionKey": null
}


the vector index quota usage size is also 0. Issue is with the vector, but I am unable to find or fix this. Please help me to fix this.

My requirement is, I need my mergedText to have all the data of fields and it must be vectorized.

Azure AI Search
Azure AI Search
An Azure search service with built-in artificial intelligence capabilities that enrich information to help identify and explore relevant content at scale.
{count} votes

Your answer

Answers can be marked as 'Accepted' by the question author and 'Recommended' by moderators, which helps users know the answer solved the author's problem.